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SECTION 1.3          Proofs 

By the end of this section you will be able to 

• construct a proof by contrapositive 

• understand what is meant by the term “without loss of generality” 

• construct a proof by contradiction 

 

I.3.1 If and only if Proof 

What is meant by ‘If and Only If’? 

‘If and only if’ in mathematics is related to two propositions such as P and Q. We have 

P if and only if Q means P implies Q and Q implies P and is denoted by P Q .  

In this subsection we are interested in proving propositions of the form P Q . How 

do we prove these? 

The proof of these, P Q ,  is done in two parts: 

1. Prove P Q  (if P then Q). 

2. Prove Q P  (if Q then P). 

In part 1 we assume P is true and then deduce Q.  

In part 2 we assume Q is true and then deduce P. 

The next example shows how this works. In this example we assume that you are 

familiar with solving quadratic equations. Also we use the following: 

0 0  or   0ab a b      

where a and b are real numbers. (You are asked to prove this in question 8 of Exercises 

I.3.) 

Example 19 

Prove that 

  22  or  3 5 6 0x x x x      . 

How do we prove this? 

Recall the symbol   means the implication goes both ways and in this case we have: 
22  or  3 5 6 0x x x x           

and  
2 5 6 0 2  or  3x x x x           

We can first prove ‘ 22  or  3 5 6 0x x x x      ’. This is a P Q  proof  

where we assume P  2  or  3x x   and deduce Q  2 5 6 0x x   .  

Proof.  
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  . Assume 2  or  3x x   then substituting these values into 2 5 6x x   gives: 

 
 

2

2

2 5 2 6 0

3 5 3 6 0

  

  
  

Hence 22  or  3 5 6 0x x x x      . 

  . The second part of the proof involves going the other way. Conversely assume 
2 5 6 0x x    and we need to show 2  or  3x x  . How? 

From the assumption 2 5 6 0x x    we solve for x: 

  
2 5 6 0

2 3 0 Factorizing

2 0  or   3 0

2   or   3      Solving

x x

x x

x x

x x

  
       

    
      

  

Hence 2 5 6 0 2  or  3x x x x      .  

By combining the two parts we have proved that 
2 5 6 0 2  or  3x x x x      . 

■ 

 

We could have proved ‘ 2 5 6 0 2  or  3x x x x      ’ first and then proved  

‘ 22  or  3 5 6 0x x x x      ’ in the above example. It does not matter 

which one you prove first. Normally it is simpler to prove the easier part first so that 

you gain confidence. In the proof of Example 19 the word ‘Conversely’ was used and its 

purpose is to divide the proof into two parts. It means we have finished the first part 

and are moving on to the second part of the proof. 

In the following example the lower case letters represent integers. 

In the next example we use the notation a b  from the last section. What does a b  

mean? 

a b  means ‘a  divides b’ or there is an integer x such that ax b  - See Definition (I.5) 

on page 19. 

Example 20 

Prove the following: 

Proposition (I.7). For 0c  , 

ac bc a b .    

What does this proposition say in everyday language? 
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For 0c   we have ‘ac divides bc’ if and only if ‘a divides b’. So how do we prove this 

proposition? 

We have the double implication sign,  , going both ways therefore we must prove 

both parts, that is 

1. ac bc a b . 

2. a b ac bc .  

Proof.  

How do we prove the first part ‘ac bc a b ’? 

  . We have already proven this in Exercise I(b) Question 5(h).  

  . We need to prove the second part, that is a b ac bc . How do we prove 

this? 

We assume a b  and then deduce ac bc . By applying Definition (I.5): 

a b   there is an integer x such that ax b . 

on the assumption a b  we have an integer y such that ay b . Multiplying both sides 

by c gives 

 
ayc bc

ac y bc




          

We have  Integerac bc  . Again by Definition (I.5) we have deduced the required 

result, ac bc , for the second part.  

Hence, we have proved   where  0ac bc a b c  . 

■ 

 

I.3.2 Proof by Conrapositive 

Let P and Q be propositions then the contrapositive of P Q  is the proposition 

   Q P    that is (notQ) implies (not P). Consider the example  

P : I have two exotic holidays per year 

     Q : I am rich 

What is the contrapositive of P Q , that is    Q P   ,  for this example? 

If I am not rich
Q



 then I do not have two exotic holidays per year
P



. 

 

Example 21 
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Construct the truth table for    Q P   . What do you notice about your answer in 

relation to the proposition  P Q ? 

Solution  

In the first two left hand columns we list all the possible combinations of P and Q. For 

the next two columns we write down the truth tables for Q  (not Q ) and P  (not 

P) respectively. In the 5th column we find the truth values of    Q P   : 

P Q Q   P      Q P    P Q  

T T F F T T 

T F T F F F 

F T F T T T 

F F T T T T 

Table 14 

By comparing the last two right-hand columns of Table 14 we can say    Q P    

and P Q  are equivalent. That is 

      Q P P Q         [Equivalent]. 

This result,       Q P P Q     ,  is important and is often used to prove 

P Q . That is, if you prove    Q P    then you have proven P Q  because 

they are equivalent. 

Summarizing from the last section and the above example we have two critical results: 

      Q P P Q        [Converse is Not Equivalent] 

      Q P P Q         [Contrapositive is Equivalent] 

These two propositions maybe hard to believe because they tend to be against our 

intuition.  

If you are asked to prove P Q  then you can show    Q P    but not Q P . 

Sometimes it is easier to prove    not  not  Q P  rather than P Q . The following 

example is such a case. 

Example 22 

Prove that if 2n  is odd then n is odd. 

Comment. Clearly this is a P Q  statement because it has ‘if and then’ in the 

statement of the proposition. Let’s try proving the given proposition by using the 

normal procedure for P Q  proof. The procedure is to assume P ( 2n  is odd) and then  

deduce Q (n is odd). 
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Assume 2n  is odd. By Definition (I.3)  

(I.3)     n is odd   2 1n m    

we can write 2n  as 
2 2 1n m        

where m is an integer. To find n we take the square root of both sides: 

2 2 1n n m   . 

We need to prove that n is odd, but we have 

2 1n m  . 

How can we prove 2 1n m   is odd? 

It’s going to be impossible to show that 2 1n m   is odd because we do not have 

any further information. Clearly if we assume P ( 2n  is odd) and then try to deduce Q 

(n is odd) it leads us down a blind alley. 

So how are we going to prove the given proposition 
2   is  odd     is oddn n ? 

Prove the contrapositive of the given proposition. 

Proof.  

What is the contrapositive of ‘ 2   is  odd     is oddn n ’? 
2  is even    is  evenn n  

How do we show this? 

This was Proposition (I.2) of Example 16 in the last section. We have already shown 

this result. 

Note we have proven the contrapositive, ‘ 2  is even     is  evenn n ’, therefore we 

have proven the given proposition, that is ‘ 2   is  odd     is oddn n ’. These are 

equivalent propositions. 

■ 

 

I.3.3 Without Loss of Generality 

Generally, in a mathematical proof we might have to cover several choices, but the 

proof is the same for each of these selections. In this case it is smarter to say “without 

loss of generality assume…” 

Without loss of generality abbreviated to WLOG is a simplifying assumption.  

For example, say you want to prove a result concerning real numbers such as x and y. 

In the proof you might need to know which of the two numbers is larger, x or y. We 
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can say “Without loss of generality assume x y  [x is less than y]” and then proceed 

with the remaining proof. 

The next example uses WLOG and is in the field of inequalities of real numbers. We 

will examine inequalities more seriously at the end of this chapter. 

Let ,   and  a b c  be real numbers. We assume the following properties of inequalities: 

0a b a b      (†) 

a b a c b c       (*) 

0,c a b ac bc     (**) 

Note that (*) is valid for any real number c but (**) is valid for positive c only. 

We will prove these in Section I.6 but for the time being assume them to be true. 

Example 23 

Prove the following, for all real numbers x and y: 

 2 4x y xy  . 

Proof.   

First consider real numbers x and y where x y . Without loss of generality (WLOG) 

assume y x . Then by (†) we have 

0y x  .        

Multiplying both sides by y x  and using (**) with 0c y x    we have 

  
  2 2 2 2

0

2 0 Expanding  2

y x y x

y xy x y x y x y xy x

  
          

  

By adding 2xy  to both sides and using (*) we have 
2 2

0
2 2

2 2 0 2

2

y x xy xy xy

y x xy


    

 



  

Adding another 2xy  to both sides we have 

   

2 2

4
2 2 2 2

2 2 2

4 Because 2

xy

y x xy xy xy

x y xy x y y x xy



   

 
        



  

Initially we have assumed x y  but what about the case when x y ? 

If x y  then on the left-hand side, we have 

     2 2 2 22 4x y x x x x     . 

On the right - hand side we have 
24 4 4xy xx x  . 

Thus when x y  we have equality: 
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 2 4x y xy  . 

By combining the two parts (x y  and x y ) we have our required result,  

 2 4x y xy  . 

■ 

 

I.3.4 Procedure for Proof by Contradiction 

‘A chess player may offer the sacrifice of a pawn or even a piece, but the mathematician 

offers the game.’ G.H. Hardy (1877-1947), who was one of the greatest mathematician 

of 20th Century England, on proof by contradiction. 

A compound proposition which is always false is called a contradiction.  

Example 24 

Construct the truth table for  P P  . What do you notice about your result? 

Solution  

The truth table can be established as follows (you showed this in question 9(a) of 

Exercises I.1: 

P P    P P    

T F F 

F T F 

Table 15 

The right-hand column of Table 15 shows that  P P   is a contradiction. In words 

this means P and (notP) is always false.  

Let P be the statement 2 1 0x   . What is P  (not P)  in this case? 
2 1 0x   . 

Hence  P P   is given by  
2 21 0 and   1 0x x      

must always be false because you cannot have both  
2 21 0 Equals zero and   1 0 Not equal to zerox x             . 

We say ‘ 2 21 0 and   1 0x x    ’ is a contradiction. 

Suppose we want to prove a proposition P then the procedure for proof by 

contradiction is as follows: 

1. We assume the opposite that is  not  P  is true. 

2. We follow our logical deductions in the proof and this will lead to a 

contradiction. 
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3. Since our assumption in part 1 of  not  P  is true leads to a contradiction 

therefore  not  P   is false. 

4. Since  not  P  is false therefore our given proposition P must be true. 

This method is called proof by contradiction. The tradition name of this proof is 

“reductio ad absurdum” which means reduction to absurdity. 

For example; prove that 
2 2x

x
x


  has no solution. 

Proof. Suppose there is a solution x a  which satisfies the given equation. Then 
2

2 2 2 22
2 2 0

a
a a a a a

a


        . 

Clearly the last statement 2 0  is absurd. Hence our supposition that there is a 

solution must be wrong, so the given equation has no solution. 

The challenge in these proofs is stating the negation of the given proposition P that is 

writing down  not  P  and deducing a contradiction. Before we construct proofs by 

contradiction, we investigate the negation of a proposition. 

 

I.3.5 Negation of a Proposition 

Consider the negation of the following propositions. 

Let P  be the proposition ‘there are an infinitely many primes’. 

What is  not  P  equal to? 

The proposition  not  P  is 

‘there are a finite number of primes’. 

Let R be the proposition ‘if 2n  is even then n is even’. 

What is  not  R  equal to? 

The proposition  not  R  is more difficult to write down because we have a P Q  

proposition where  
2if    is even  then   is even

P Q

n n
 

 

.   

Why is ‘if 2n  is even then n is even’ a P Q  proposition? 

Because it has an ‘if and then’ in the statement. Thus proposition R is P Q . 

Therefore  not  R  is  not P Q  but what is  not P Q  equal to? 

By constructing the truth table of this we can show that 

   not not     EquivalentP Q P Q                  . 

You are asked to prove this result in question 1 of Exercises I.3. 
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‘  not  P Q ’ is ‘P  and  not  Q ’ which means that  not  R  equals ‘P  and  notQ ’. 

Hence  not  R  is  

‘ 2

not 

 is even   and    is odd
P Q

n n
 

’.     

Consider another proposition Q given by ‘it is impossible to find non - zero  integers 

,   and  a b c  such that 

   n n na b c   where 3n  ’. 

The negation of this, or  not  Q , is  

‘it is possible to find three positive integers ,   and  a b c  such that 

   n n na b c   where 3n  ’. 

This proposition Q is the famous Fermat’s Last Theorem. Fermat was a French 

Lawyer and he did mathematics in his spare time. The reason why Fermat’s last 

theorem is popular is because Fermat stated his theorem around 1630 and added that 

“I have discovered a proof, but the margin is too small to write the proof”. 

          
Figure 2   Pierre de Fermat   Andrew Wiles 

However, for over 350 years no one could find a proof for this theorem. Eventually in 

1993 Andrew Wiles a British mathematician working in Princeton USA provided a 

proof at Cambridge. Initially his proof had a flaw but it was resolved in 1995. 

Fermat’s last theorem states that the equation 

for 3n n na b c n     

has no non - zero integer solutions. What does this mean? 

We know there are integer solutions for 2n   because it crops up in Pythagoras’s 

theorem (these numbers are called Pythagorean triples): 
2 2 2 2 2 2 2 2 2 3 4 5 , 5 12 13 , 8 15 17 ,...          

However, when the index 3n   we cannot find non – zero integer solutions to the 

above equation. This means there are no positive or negative integers ,   and  a b c  

such that 

javascript:enlarge('Fermat_4.jpeg')
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3 3 3 4 4 4 5 5 5, , ,...a b c a b c a b c        

There are some near misses such as 3 36 8 728   but 39 729 . 

I.3.6 Proof by Contradiction 

In this subsection we look at examples of proof by contradiction. The proof is carried 

out by using the procedure outlined in subsection I.3.4. 

An important tool we use to prove results is the Pigeonhole Principle given by: 

(I.8) Pigeonhole Principle: If there are 1n   or more objects and only n boxes then 

some box will contain at least two objects. 

Proof. (By contradiction). 

Suppose each box contains at most one object. Then the largest number of objects is 

There are  ones 

1 1 1 1
n

n    



.    

This is a contradiction because the largest number of objects is n but we have 1n   or 

more objects. 

■ 

It is worth learning the Pigeonhole Principle statement. 

We need to define the term reciprocal for the next example. 

Definition (I.9). Let x be a non-zero real number. The reciprocal of this real number, x, 

is a real number y which has the property 

1x y xy   .  

For example the reciprocal of 3 is 
1
3

, reciprocal of 2  is 
1
2

 , reciprocal of   is 
1


  

reciprocal of 
2
3

  is 
3
2

 . 

Example 25 

Prove the following: 

Proposition (I.10). Every non-zero real number has a unique reciprocal. 

What does the word ‘unique reciprocal’ mean? 

There is only one reciprocal. 

We can use proof by contradiction to prove this proposition. To use this approach, 

what do we need to do first? 

We need to state the negation of the proposition, which is: 

There is a non-zero real number whose reciprocal is not unique. What does this 

statement mean? 

There is a non-zero real number such that it has more than one reciprocal. 
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Proof.  

Suppose there is a non-zero real number call it x whose reciprocal is not unique. 

Consider it has two different reciprocals call them y and z. 

Then y does not equal z, that is y z . Why not? 

Because if y z  then x has the same (one) reciprocal and so that means it is unique 

and there is nothing left to prove. 

Since y and z are the reciprocals of x therefore by Definition (I.9) we have 

1  and  1xy xz  . 

Because these, xy and xz, are both equal to 1 so we can equate them 

xy xz . 

Since x is non-zero, we can divide through by x which gives 

y z . 

But above we had y z . We cannot have y z  and y z . Hence this contradicts our 

supposition on the first line of the proof, that there is a non-zero real number whose 

reciprocal is not unique. Thus, the given proposition must be true. 

■ 

What exactly is the meaning of the negation of the original proposition in the above 

proof?  

If it is not unique means, there must be more than one so we considered two reciprocals 

(of course we could have considered three or even more, but it just makes the proof 

untidy and unreadable).  

Next, we applied logical mathematical deductions assuming two reciprocals in the 

above proof and this resulted in a contradiction. Since we had a contradiction this 

means that our supposition of two reciprocals must have been false. Hence the given 

proposition ‘every non-zero real number has a unique reciprocal’ must be true. 

Proposition (I.10) is an important result in the mathematics of real numbers. The 

reciprocal is also called the multiplicative inverse. In general, if x is a non-zero real 

number then the unique reciprocal (or unique multiplicative inverse) of x is 
1
x

. 

In the next example we state a proposition which is called a lemma.  

A lemma is a proposition or theorem used to prove another proposition or theorem.  

Lemma is a stepping stone to prove a more important result. 

Example 26 

Prove the following: 

Lemma (I.11). If 2n  is even then n is even. 
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Proof. See question 3(a) of Exercises I.3. 

■ 

In the next example we prove that 2  is not a rational number. What is a rational 

number? 

Definition (I.12). A rational (ratio) number is an integer or is written as a fraction of 

two integers, p and q, denoted by 
p
q

 where 0q  . 

For example; 
10 0002 1 3 18

, , 3 ,   and   9
3 3 1 6 2

     are all rational numbers. 

We can write each rational number 
p
q

 in its simplest form. For example  

4 2 2 1 9 3 15 5
, , ,

6 3 4 2 6 2 9 3
    . 

A rational number in its simplest form is when it is written with no factors in common 

apart from 1. What does the term factor mean? 

A factor is a number that divides another (or the same) number. For example 2 4   

[2 divides 4] and we say 2 is a factor of 4. Clearly 1 is always a factor of every number. 

However, we want to prove 2  is not a rational number. Can you think of where 2  

appears? 

In a right-angled triangle with smaller sides of unit length as shown in Fig. 3: 

Figure 3    

The longest length (hypotenuse) is found by applying Pythagoras theorem: 

2 2 2 21 1 2 1 1 2     . 

Example 27 

Prove the following: 

Theorem (I.13). 2  is not a rational number. 

Proof. (By contradiction). 

Suppose 2  is a rational number. By Definition (I.12) we can write 2  as 

2
p
q

   
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where p and q  0  are integers with no factors in common other than 1. We say 
p
q

 is 

in its simplest form. If they do have factors in common, then cancel them down to its 

simplest form. Multiplying both sides of 2
p
q

  by q gives 

  
2 2

2

2 Squaring both sides

p q

p q


    

  

We have 2 22p q  is a multiple of 2 therefore it is even. By Lemma (I.11) 

(I.11)     2n  is even     n  is even 

we have 
2p  is even   p is even.       

Since p is even, we can write this as 
2   where  is an integer.p m m  

Hence  22 22 4p m m  .  

Substituting this,  2 24p m , into the above, 2 22q p , gives 

   
2 2

2 2

2 4

2       Dividing by 2

q m

q m


    

  

We have 2q  is a multiple of 2 therefore 2q  is even. Again, by Lemma (I.11) we have  
2q  is even   q is even. 

Hence, we have both p and q are even. This means that both p and q have a common 

factor of 2. This is a contradiction. Why? 

Because at the start of the proof we said that  p and q have no factors in common 

(apart from 1) and now we have shown that p and q have a common factor of 2. Our 

supposition ‘ 2  is a rational number’ must be false. Hence 2  is not a rational 

number. 

■ 

A number which is not a rational number is called an irrational number. We say 2  is 

an irrational number. 2  was the first known irrational number and again it was the 

Greeks who two thousand years ago produced the first proof of the irrationality of 2 . 

Other examples of irrational numbers are 

 2, 3, 5,   and  e . 

In fact, square root of a non-square number is irrational therefore 

 6, 7, 8  and 10  are all irrational numbers. 
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Example 28 

Prove the following: 

(I.14) Let n be a non - square real number. Then n  is irrational. 

Proof. 

Suppose n  is rational. Then 

p
n

q
  where p and 0q   are integers. 

Squaring both sides gives 
22

2

p p
n

qq

       
.    

Hence n is a square number which contradicts our assumption. By contradiction we 

have our result that n  is irrational provided n is a non – square number. 

■ 

We have the stronger statement: 

If n is a non- square number and a and b are integers then  

a b n  is an irrational number. 

You are asked to prove this in question 17(ii) of Exercises I.3. 

 

SUMMARY 

The statement ‘P if and only if Q’,  P Q, statement is proved in two parts: 

1. Prove P Q  (if P then Q). 

2. Prove Q P  (if Q then P). 

WLOG – ‘Without loss of generality’ is a simplifying assumption which is used in a 

proof.  

Lemma is a proposition which is used to prove another more important proposition. 

The Pigeonhole Principle says: 

If there are 1n   or more objects and only n boxes, then some box will contain at 

least two objects. 
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