Exercises I.1

Brief solutions end of Exercises.

Complete solutions at www.oup.co.uk/companion/NumberTheory

1. Which of the following are propositions?

The ones that are propositions state whether they are true or false.

- (a) 2+2=4
- (b) 2+2=3
- (c) All Swedish subjects have blonde hair.
- (d) She looks beautiful.
- (e) $x^2 1 = 0$
- Negate the following propositions:
- (i) Man can be pregnant.
- (ii) Grass is green.
- (iii) Lecturers annual salary is over £45 000.
- (iv) There are integers a and b such that $\frac{a}{b} = \pi$.
- (v) There are integers a and b such that $\frac{a}{b} = e$.
- **3.** Write the following in words:

$$x^{2} - 9 = 0 \Rightarrow x^{2} = 9$$
$$\Rightarrow x = \sqrt{9}$$
$$\Rightarrow x = \pm 3$$

4. Let P: x < 3, $Q: x^2 < 9$. Write a sentence for

(i) $P \Rightarrow Q$

(ii) $Q \Rightarrow P$

Do you think either of them, (i) and (ii), is true?

Let P: ABC is an equilateral triangle.

Q: All the angles inside the triangle ABC are equal.

Write a sentence for

(i) $P \Rightarrow Q$

(ii) $Q \Rightarrow P$

Are both of these, (i) and (ii), true?

6. Let P: n is prime and $Q: 2^n - 1$ is prime. Write the following in words:

(i)
$$P \Rightarrow Q$$

(ii)
$$Q \Rightarrow P$$

*Do you think either of them, (i) and (ii), is true?

Construct the truth table for $Q \vee P$. Compare your answer with the truth value for $P \vee Q$. What do you notice?

8. Construct the truth table for $Q \wedge P$. What do you notice about your result by comparing with $P \wedge Q$?

9. Construct the truth table for:

(a)
$$(\neg P) \wedge P$$

(b)
$$(\neg P) \lor P$$
 (c) $\neg (\neg P)$

(c)
$$\neg (\neg P)$$

10. What are the following compound propositions equivalent to?

(a)
$$\neg (\neg (\neg P))$$
 (b) $P \wedge P$ (c) $P \vee P$ (d) $(\neg P) \wedge (\neg P)$

(b)
$$P \wedge P$$

(c)
$$P \vee P$$

(d)
$$(\neg P) \land (\neg P)$$

11. Show that $\neg(P \land Q)$ and $\neg P \lor \neg Q$ are equivalent.

12. Show that $P \wedge (Q \vee R)$ and $(P \wedge Q) \vee (P \wedge R)$ are equivalent.

13. Devise an equivalence rule to the following compound proposition:

$$\neg \neg \dots (\neg P)$$

[Hint: The rule will depend on the number of $\neg\,]$

Let P be the proposition 'the cup is full'. By using this devised rule what is $\neg\neg\neg\neg P$ equal to?

Construct the truth table for $(\neg P) \Rightarrow Q$. **14.**

15. Construct the truth table for

$$\left|\left(P\wedge\left(\neg Q\right)\right)\Rightarrow\left(R\wedge\left(\neg R\right)\right)\right|\Rightarrow\left(P\Rightarrow Q\right)$$

What do you notice about your results?

Brief Solutions to Exercises I.1

1. (a), (b) and (c). 4 and 5. Both Proposition are true. 6. Only (ii) is true.