COMPLETE SOLUTIONS TO SUPPLEMENTARY EXERCISES ON INTEGRATION

Complete Solutions to Supplementary Exercises on Integration

1. We are given | zsin’ <m> dz . How can we integrate this?

o%m\:a

By applying integration by parts:
[(w)de = ww— [u'vda
Let u=z and v'= sin’(z). Then
sin (2|
2

. 1 1
uw'=1and v= fst (x)d:z: By?;ig 5»”1 — cos (Qx)} dz = 5
identity

xr —

Substituting this into the integration by parts formula gives

™

m 2

]l‘SinQ (:v) dzx = [uv]g — fu'v dzx
0

0

_ xl[x_sin(Qa:)]Z_l]. x_sin(Qx) L
2 2 2 2
) 0
=0 e
N | KN | Sin(?r _ $_2_|_ COS(%)E Taking out ~
20|22 2 2 4 8 2

2 2
2. We need to integrate (ln (a:)) between 1 and 2. We can write (ln (x)) as
(ln (1:))2 = (ln (x)>2 x 1
Again using integration by parts with v = (ln (x))2 and v =1:

u’:21n(9[:)l and v:fldx:x
T
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COMPLETE SOLUTIONS TO SUPPLEMENTARY EXERCISES ON INTEGRATION

Putting this into the integration by parts formula gives

Z‘(ln (a;))2 dz = qu - jj‘u'v dz
= (111(:1:))2 xj — j2ln(x)%¢ dz

2
We need to find the last integral on the right hand side, f In (x) dz:
1

Again applying integration by parts with
p= ln(x) and ¢’ =1
pp=—and ¢==x

Therefore

= 2(In(2)) —2(2 1n (2)-1)

)2 —2In (2) + 1] [Taking out a factor of 2]

>_ 1]2 [By identity a* —2ab +b* = (a B b>2]
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COMPLETE SOLUTIONS TO SUPPLEMENTARY EXERCISES ON INTEGRATION

. We are asked to find f 7" sin (:v)dx We repeatedly use integration by parts:
0

UUE — LZ(U'U) dz

™

—2° cos (m)}z + 3f <x2 cos (x)) dz

0

.3 . e
s E:_(Tﬂ;) 0 +3[<$ cos(a:))da:

™+ 3] (a:z cos (a:)) dz (*)

Applying integration by parts to find the last integral on the right hand side:

0

| ———

[ (& cos(a))da = [o?sina)]| - z(z$ sin(z))d

=0
=0-— 2]xsin(x)d1:

_ _21[_3; cos ]| + ]“cos(x)dx}

|

0

= =27

—T COS (71') -0

Applying integration by

g parts again

+ [sin (:v)];r}

1

Putting this ](1‘2 cos (x))da: = —27 into (*) yields

0

. We are asked to compute f

. 2 !/
with v = 2" and v =

]xssin (x) dz =7 + 3] (332 oS (x)) dz

0

1

2

"

1—2°

0

=7’ —|—3<—27r) =7 —6r

3

—dz . Using integration by parts formula

1—332)5

Then

3/2 °
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COMPLETE SOLUTIONS TO SUPPLEMENTARY EXERCISES ON INTEGRATION

u' =2z and vszg/zdx
1— x2>
How do we find v?
By using integration by substitution with
p=1—2" = d—p:—2x = dxz—d—p
dz 2z
Therefore
o 3/2
= 1-2 )
! )
z d - 2 - - 1
:—f 3/2—p ——f p :p2:<1—$2)2:

p’" 2% -1/ 2) 1—2°
Now applying the integration by parts formula gives

1 1

V2 73 1 R

fﬁdx = [uv]aﬁ f(u v) dz

0 1 _ 1172 2 0

-
1M 1
= |2 — | |2z dz
1
+
1 1 1
=|= -2 |z dz T
2 1 [ V1 -2 ( )
2

The integral on the right hand side of (1) is calculated by substitution with
p = 1— 2" then by using the above computation of v:

1 1

T R pé T
do =—— deP:‘]g =—-1
{ 1—x] 2‘1[ %/2 V2
1

Putting this into () yields

no

x
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COMPLETE SOLUTIONS TO SUPPLEMENTARY EXERCISES ON INTEGRATION

3

5. How do we calculate f dz ?

1+ z*

Use integration by substitution with u = 2*; then

Changing the limits of integration gives:

When z =0, u=0 and = =3, u = 3" = 9. Using the limits we have

flﬂ - f L Cran (w)] = Stan (9

1 + U 2,%’ by standard integral

e 1
6. We need to find f z ?ln (:c) dz . Applying integration by parts with

1
1 2 1
Thenu':landvzfodxz LA

T 1/2
We have
]x; In (1:) dx = [uv]i — j(u'v) dx
1 1 1 “1 1
= |2z2 ln( ) —2f;x2d:c
1
22621I16 0—2f _5d:v
_1 1 ;
1 .2 1 1 1
= 2e? — =2e? —4|e? —1| =4 — 2¢?
1/2
1
7. How do we evaluate ] 1 dz ¢

L= (a)f

By substitution with v = In (a;) . Differentiating this gives

d—u:l: dz =z du
dr =z
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COMPLETE SOLUTIONS TO SUPPLEMENTARY EXERCISES ON INTEGRATION

Our new limits are In (1) =0 and In (e) = 1. We have

€

1

fm S o e

= [sin’1 (u)]: = sin! (1) = g Because fﬁ — gin~! [u

———x du

a 1/
. We need to find f €
T

By substitution with v = —. Differentiating this gives

du ,2 1

Our limits are:

When z = a then u:l and when z =1 then v =1. We have

Ey A

dz ¢

. How do we find f
-’

Use the standard integral given in the book:

du 1
8.30 =—In
(8.30) Il p

a+u
a—1u

Applying this to the above gives

2

1
f16—

-2

Using
In(a)—In(b)=In(a/b)
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COMPLETE SOLUTIONS TO SUPPLEMENTARY EXERCISES ON INTEGRATION

3
10. How do we calculate f

1
——dx ?
L Vdz — 2
By completing the square on the quadratic:
4y —x° = —1° + 4z

et —aa] = —|(z—2) —2*|=2" — (s —2)

Substituting this 4z — 2* = 2° — (fv — 2)2 into the above integrand gives

3

dz =
“1[ iz —2° f /22 x _
But how do we integrate this f \/—
2 x —

1 U
By applying the standard integral formula f ——du=sin""|—|:
Vao© —u’

«
3
. qlr—=2
sin” | ——
2

1

dz =
2

[\/22 —(:l?

11. We need to find j{(m — a) (b — x)}_;dx. This answer involves a lot of algebra,

a

especially completing the square. We first examine (x — a)(b — x):
(95—&)(1)—95):ﬂz:b—:zc2 —ab+ax = —2° +<a+b)x—ab

Completing the square on the last expression gives
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COMPLETE SOLUTIONS TO SUPPLEMENTARY EXERCISES ON INTEGRATION

—x2+(a+b)x—ab=— w2—<a—|—b)m+ab]

2 2
= — a:—a;_b +ab—[a+b] [Completing the square
a-l—b2 a’ 4 2ab + b
=—|lz— 5 +ab—————

2 2 2
_a+b +4ab—a —2ab—0
2 4

a—l—b2 —a* +2ab—b*
— +
2 4

2
_ x_a+b _[a2—2ab—|—b2

2 4
2 2
[a—b] [ a+b
= —|z -
Taking the 2 2

minus sign in

2 2

2 2
a-+b [a—b]
= — x— J—

d
Now using the integral result f % = sin”! [E] with
2 2 6]
o’ —u

o= a—b and u:x—a+b
We have
b
- el oo
a x — a b — x
f 1
= f - - dx [From above
o Jla—20 a+b
—_ x _
2 2
b
_a+b
= |sin* 2
a—>b
2 a
I 2x — (a + b) Multiplying numerator
N a—>b and denominator by 2

. -1 b_a/ . -1 a_b
= Sin — Siln
a—>b a—>b

=sin! (—1) —gin* (1) 37% — g =
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COMPLETE SOLUTIONS TO SUPPLEMENTARY EXERCISES ON INTEGRATION

12. We need to find ]‘cos(z) + sin (:z:)‘ dz. First converting the cos(:z:) + sin(a:)

into amplitude phase form which is formula (4.75) in the book:

(4.75) a cos (3:) + bsin (:c) = rcos (x - ﬁ)
where r =+/a®> +b° and = tan' [2]

a

Applying this to cos (a:) + sin (a:) gives
coS (m) + sin (x) = \/Ecos [a; — z]
4

Since the integrand is the modulus of this so we need to be careful when this
function \/5 cos [a: — %] is negative. Easier to see this in the sketch of the

graph:

We split the integration between the positive and negative parts of the
function because the modulus function definition is

u ifu>0

M: —u ifu<0

Therefore
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COMPLETE SOLUTIONS TO SUPPLEMENTARY EXERCISES ON INTEGRATION

Using the amplitude
dz

7r
€08 [a: B Z] phase form

]ﬂ‘cos(a:) + sin(a:)‘ dz = \/5];

—/4

—\"2 iZ:cos[x —g] dz — Bﬂ];os[x —g] dz — _f cos_[:v —g] dz
el ol el
AT AT e VR
=2([1-(-1)]- %—1]—'—1—%‘ =42

1
13. (a) We need to investigate the improper integral f (1 — :v) In (:v) dz . First we
0

find the indefinite integral by using integration by parts and then we place

the integral limits.

Let u:ln(x) and v =1— 2. Then
ulzi and v:f(l—ﬂl:)davzz—ﬁ:?2

Therefore we have

f(l—:z;)ln(:z:) da:z’uxu—j;u'v dz 2
et m(x)_fé[m_%

= x_a; 111(:5)— x—%z
Using the limits we have
1
I(l—x)ln(x) da::lcig)l [x—%]ln(w)— a:—x—Q C
12 12 ) 2 2
:[1—5]111(1)— 1_Z —lclirol [c—%]ln(c)— C_CZ
=O—§—lim c—ﬁ 1n<c)+lim c—i
/—— 2 =0 4
—
—2ongle-Sfot) 1)
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COMPLETE SOLUTIONS TO SUPPLEMENTARY EXERCISES ON INTEGRATION

In (c) in (). How do we evaluate this

c—0

2
We need to find the limit lim [c — %

limit?
We know the series expansion of In (1 + x) which is given in chapter 7 and is

2 3 4
(7.21) ln<1+x):x—%+%—%+--~ provided —1 <z <1

If we substitute y = 2 —1 into this formula (7.21) then we get the Taylor

series around 1:

| b - o)
n(y):(y—l)— 5 + s 1 + .-+ provided 0<y <2

2
Using this and evaluating the above limit lim[c — %] ln(c):

c—0

lciirol[c—g]ln(c) = lci£r01 c[l—% ln(c)

— lim c[1—§] (c—l)—(c_1>2 +<C_1)3 ) +oel[=0

c—0

Putting this into () gives

1 2

f(l—a:)ln(x) dzr = —é—lim c—< ln(c): —§—0= _3

4 4 | 2 4 4
(b) We first find the integral and then substitute the limits:

2 9 2
fa;%’”da;zfx -ze “dx

We use integration by parts to evaluate this integral with

uw=z" and v = ze”

Then v’ = 2z and

v = fxefzzd:c = fxep;% — _151) _ _16712

-

Letting p:ax2

then @:21
dz

Putting this into the integration by parts formula gives
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COMPLETE SOLUTIONS TO SUPPLEMENTARY EXERCISES ON INTEGRATION

3 —a? !
fxezdx:uv—fuvdx

1 2 1 P
=2 |—=e " |+ = | 2ze " dux
2 2 f
1 )

1 2 2
=2 —Ze " From above fxe "de = —=¢€¢"
2
1
=—=e" (z2 + 1)
Sticking in the limits gives
+o00 1 M
f e de = lim |[——e " (332 + 1)
0 Moo 2 0

= lim —%e-MZ (M7 + 1)] - l—%eo (0+ 1)‘
5o

Using the power series expansion of e’ which is formula (7.15)

= lim

M—o00

—%e_Mz (M2 + 1)

2 3
(7.15) e =144+ 42 4
21 3!
For ¢° we have
4 6
e =14+ Ty (%)
2! 3!
Using this in the evaluation of the limit in (*) yields
. M +1
lim —le_M (M2+1) = lim _1—( g )
M—oo| 2 M—oo| 2 M
. 1 M 41
= lim |—= " - [By (**)]
M—oo 2 ) M M
I+M +—+—+
21 3!
~ lim 1 1+1/ M Divide numerator and
x| 2] M M? denominator by M*
— 1ttt
M 21 3!
S 1+0 ——2(0)=0
2 (M M 2
O+14 lim |—+—+ -
M—oo| 21 3!
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COMPLETE SOLUTIONS TO SUPPLEMENTARY EXERCISES ON INTEGRATION

Putting this into (*) gives

f:cge_””?dx = lim

M—o0

—%e_Mz (M2 + 1)

1 1 1
+—-=0+—-==
2 2 2
% tan ! (x)
(c) We need to examine the improper integral f —d
0

Again we first evaluate the integral without the limits (indefinite integral).

We have
tan~' (z
IA dz = f:v_2 tan™" (a:) dz
2
x
We use integration by parts with u = tan™ (x) and v’ = 27 Differentiating

one and integrating the other gives
1

u = >

142

Putting these into the formula gives
tan™' (a:) )
f—de:uv—fuvdx
T

:——tan1 +f1+:v ;dx (T)

We need to find the integral on the right hand side of (1) by using partial

and v = faf?dx =—z'=—=

fractions:

11 1 A n Bz +C
1+2° a:<1+x2) r 1442
From this we have
L= A(1+2°)+(Bz +C)a (%)
Substituting = 0 into (*) yields
1=A4
Equating coefficients of z* in (*):

0=A4+B=1+B = B=-1

Equating coefficients of z in (*):
0=0+C = C=0

Substituting these values of A, B and C into the above gives:
1 1 1 x

1+x2;_a: 1+ 27
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COMPLETE SOLUTIONS TO SUPPLEMENTARY EXERCISES ON INTEGRATION

Now the integral on the right of (}) is easy to evaluate

fl—l—x " f dzx f1+x dlen(z)—%ln(l%—ﬁ):ln%

Putting this into () gives

-1

ftanx—Z(x) dx = —%tan1 (x) + In

_r
V14 2°
Splitting the given integral between 0 to 1 and 1 to 400 we have:

Ttanl (=) . jtanl () “Xtan ' (z)

dz + dz
0 a’ 0 @’ 1 a’
1 tan~ l(x) M tan~! (x)
= lim —dx + lim f—da}
c—0 .’I/' M—+o0 xQ

0

Working through each of these integrals separately:

- tan! (:L‘) . 1 T '
161301 c de = lclg)l —;tan ! (a:) +In \/H_—g;? [From above]
1 _ 1 . 1 _ c
= '—Itan ! (1) + In \/1+—12 —161301 —Ztan ! (c) + In \/14_—02]1
T 1 . 1 B c
:—Z—Hn $ —lgxg —Ztan 1(c)—i—ln m
Now
. c o 1 2\ _ _
lclixol In \/1_|_—CZ —1C1£I(J1 ln<c) 21n(1+c ) 00
o0 tan ! (:v)
Since one of the integral diverges so the given integral f — —dz
f T
diverges.

14. The shaded area is given by the integral

™

1

—dx
g 1—cos (x)

We can rewrite the term under the square root sign as
1—cos (az) = Cos (0) — Cos (x)
Applying the trigonometric identity:
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COMPLETE SOLUTIONS TO SUPPLEMENTARY EXERCISES ON INTEGRATION

A+ B

S1n

(4.63) cos (A) — cos (B) = 2sin

B-A
2

On cos (O) — cos (3:) gives

cos(0) — cos () = 2sin [g] o [g] e [5]

Taking the square root of this yields

W=M= \/Esin[g]

Substituting this /1 — cos (a:) = \/5 sin [g] into the given integral:
L dz =

1 1
{ 1/1 — COS (:v) B g‘f Sin(fﬁ / 2) e M

Using the trigonometric identity

NI

(4.72) sin (x) _ 2 where t = tan |~
14¢ 2

We have

sin z :i where ¢t = tan z
2] 1+4¢ 4

Differentiating ¢ = tan [i] gives

ﬁzlsec2£=ll+tan2£ :l[1+t2}
de 4 4] 4 4 4
4dt . . . .
We have dz = PR Changing the limits of integration:
+t

When z =g then tan[WQQJ = tan[%] and at z = 7 then tan[g] =1.

Using this substitution in (1) gives
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. | = V2

in(1)~ In [tan [gm -

{f)

15. (a) Let u =1+ 2" then % =2z = do= c21_u and the given integral without
T T

the limits is

112u -1

Substituting back the given substitution © =1+ z° into the above gives

[V T LUk e N TS (%)
<x2+1)3 4| ? 4 (I2+1)2 4 (x2+1)2
Sticking in the limits yields
7’ x:—l 22" +1
0 (:c2 —|—1)3 4 (xZ —|—1)2 ,
:_l 2¢° +1 B
R}
o 2a2+1—(a2+1)2
4 (02 +1)2
:_12a2+1—a4—2a2—1 :_l —a' :1 a' _ a'
4 (a +1) e+ | (e +1) o(e +1)]2
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(b) This time we use the substitution u = tan™' (x) Differentiating this gives

du 1
dz 1+ 2°

= dzr= (1+:1;2)du

Also from the given substitution u = tan™' (:1:) we have
tan (u) =z
The integral without the limits is equal to
2
f (a:2 + 1)3

To find the integral on the right hand side of the above expression we use

dz = tan’ (u) 147" |du = tan—(u>tam2 u) du
f M(taﬁ (u) + 1)2 M f (tan2 (u) + 1)2 ( )

integration by substitution:
Let p =1+ tan® (u) then

dp _ 2 tan (u) sec’ (u) 2 tan (u)[l + tan® (u)} = 2tan (u)p
du Becanse sec2(u)1-tan{u) —

We have du = " dg() ) . Substituting these into the above evaluation
an(u)p
tan (u > tan’ (u) du yields
(tan2 (u) + 1)
tan(u , tap{u dp Because
I du = -1
(tan” (u) + 1)2 ) o f P e >2ta afp |tan’(u)=p-1
_1lprp-1
=3 > d
1 _ _
=3 (p - p;’) dp
__ P
T 1 —2
__nr by _1pzp-tp 1izp—l (*)
2lp 2])2_22]72_4102

Note that p =1+ tan® (u) and u = tan™' (x) therefore
p=1+ [tan (tanf1 (:c))r =1+2°

Putting this p = 1+ tan® (u) =1+ 2" into the above (*) we have
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16.

fx— dz = f tan(u) tan’ (u) du

(x2 + 1)3 (tan2 (u) + 1)2
IR S I E TS
4 <x2+1)2 4 <$2+1)2
This expression is identical to the one in (**) in part (a). Hence from part (a)
we have
2 . dr = a’ >
o (22 +1) 2(a +1))
We are given I = f tan" da: and we need to show:
I +1 ,= !
n—1
Working with I we have
1 = jtan" (x) dz = ]tan"’2 (:c)tan2 (x)dm
0 0
= jtan""2 (a:)[sec ( ) }dx [Because sec (a:)—lz tan’ (:z:)]
0
= ]tan sec ]tan ] an"’ (m) sec’ (a;) dz -1,
0 0

=1,

Adding I, to both sides gives

!

= L[tabn""2 (x) sec’ (x)dx (*)

Let u = tan (a:) then differentiating this gives

% = sec’ (:1:) = dz =

du

SeC2 (CU)

The new limits are u = tan [g] =1 and v = tan (O) = 0. Therefore the

integral on the right hand side of (*) is given by
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i
I +1 ,= ftan" : (.fz:)&‘,ec2 (m) dz
0
1 1 n—1 1 n—1
=fu"72se2x du =fu"72du= Y =1 —-0= 1
0 se 2 T 0 n — 1 0 n — 1 n — 1
. 1
Hence we have our required result; I +1 , = T
n ——
17. We are asked to show
400 , 1 +o00 ,
f z'e " dx = —(n — 1) f " e " dx
0 2 0

How do we prove this result?

By rewriting the integrand and then applying integration by parts:

+00

M M
—g? . _? . 1 —?
fx”e “dr = lim z"e “dz = lim z" (xe v )dx
M—+o00 M—+o00
0 0

Let u=2"" and v/ = ze . Differentiating v and integrating v’ we have
u = (n — 1) 2" and v = f:ce‘xde
In order to find v we use substitution with p = 2* therefore

d—p=2x = dx=@

dz 2x
We have

v = fxe”zd:v = fxep%i = %f@pdp - —%ep _ _%ezz

Substituting these evaluations into the integration by parts formula but

without the limits gives

fx"fl (:cefzz)dx = uv — fu’v dz

B

_ _%xnlezz + (n 2_ 1) fxn72efz2dx

Sticking in the limits we have
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0 by Taylor series expansion
+o00
= M f "% " da
2 0
+00 s 1 +00 s
Hence we have our required result, f x'e " dr = 5(71 — 1) f 2" e " dz .
0 0
+o0
We are asked to evaluate f e dx. Putting n =5 into the given result:
0

. ) oo +oo
f 2le " dr = 5(5 -1 f o dr = 2f w’e ds ®)
0 0 ’

We work out the last integral on the right hand side of (*) by applying the

given formula again but with n = 3:

+00 +00 +00

fx3e_“2dx = %(3 — 1) f:z:3_26_’”2d:c = fxe_””zda:

0 0 0

In the above we have already found the indefinite integral of the last integral.

We had f ze " dz = —%6_”2 . Substituting the limits we have

+oo +o0

fx3e”2dx = fxefzzd:z:
0 0
. 2 . 2 1
= lim |[——=e¢ | =—=|lim (e‘M )—eo :——[0—1]:l
M—+00 2 0 D | M—+o0 2 2
+00

2 1
Substituting this f e " dzr = 3 into (*) yields
0
+00

f e dr = QT e dr = 2[%] =1

0

2. cos (m:) —1
18. We need to find I, =1, given [, = [ ——"——

dz. Writing out I —1
,  sin (x)

n—2"
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Applying the trigonometric formula of chapter 4:

. |A+B|. [B-A
(4.63) cos(A)—cos(B):2s1n[ 5 ]sm[ 5 ]

To the numerator part of integrand we have

cos (nx) — CoS ((n — 2):15) = 2sin

2

nm+nx—2x] . [nw—2x—nw]
Sin

=2 sin[(n — 1):r}sin(:v) [Because sin(—:z) = —sin(:c)}

Substituting this into the numerator of the above integrand gives

™

I 1= ] COS (nx) — Cos ((n — 2) x) e

/ sin (x)

_ —2j sin[(n 1) x] dz

cos|(n —1)z|?
= —2|— [( ) ] = cos(n—l)z—l
n—1 n—1 2

0

We have the general formula [ —1 = cos (n — 1)% —1].

n —_—
Substituting n = 3 into this in order to evaluate I, gives

s

I,—1I = —|cos (3—1)5 —1| = cos(w)—l =-2

=1

Therefore by adding I, to both sides of the above we have
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I,=—2+1 ()

To find I, we need to evaluate I,. What is I, equal to?

o . . ; cos(n:z:)—l
Substituting n =1 into the given formula; I = f - dz:
f sm(a:)
B 2 cos(:v)—l
h —‘[ sin (z d ()

Let u = cos(x) —1 then

d . d

d_z = —sm(x) = dz=— sinl(Lx)

The new limits are
u:cos[z]—lzo—lz—l and uzcos(O)—lzl—le
We have

1
dz

 cos(n) -
h= ‘Of sin(:z:
-1

i ey s e s il ey L)

0 -1

From the fundamental trigonometric identity
sin’ (0) + cos’ (0) =1 we have sin® (0) =1—cos’ (9)
From above we have u = cos(x) —1so0o u+1=cos <a:) and
sinz(x):1—0082<x):1—(u+1)2 =1-u —2u—1:—u(u—|—2)

Substituting this into the above I integral in (TT) gives

% udu %  wdu
h= f sin’(z) f ot (u+ 2)0
= ~fiufa 2], = -[ifz)- (1] =)
cos(:v) -1

o%w\:\

We have I, = dz =—In (2) Substituting this into (*) yields

sin(x)
I,=-2+1 =-2-1n(2)

For I, we substitute n =4 into the above derived formula,

Page 22123



COMPLETE SOLUTIONS TO SUPPLEMENTARY EXERCISES ON INTEGRATION

Adding I, to both sides yields

2
[ :I _ = kok
4 2 3 ( )

This time we need to evaluate I,. What is I, equal to?

co (n:z:)—l

7
Substituting n = 2 into the given formula I = f dz yields:
0

> co 23: — 1

[ sm
We have to work this out. From chapter 4 on trigonometry we have the
following identity:
(4.54) cos (23:) =1-2sin’ (m)

Substituting this into the above integral gives

_ g cos(2x>—1
1 —IT@dx
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