Injective & Surjective Functions

\[f(x) = x^2 \]

Many \quad \rightarrow \quad \text{one}

Let \(f: \mathbb{R} \rightarrow \mathbb{R} \) be given by \(f(x) = 2x \).

Find the image of

\(-3, -2, -1, 0, 1, 2, 3\).

Solution:

One \quad \rightarrow \quad \text{one}.

One \rightarrow \text{one} is called an injective function.
\[f(x) = \frac{2x}{x-3} \]
\[f(y) = \frac{2y}{y-3} = f(x) \]
\[2x(y-3) = 2y(x-3) \]
\[2xy - 6x = 2xy - 6y \]
\[-6x = -6y \]

\[x = y \]

Hence \(f \) is an injective function.

Let \(f: \mathbb{R}^+ \to \mathbb{R} \) be given by

\[f(x) = x^2 + 2 \]

Test \(f \) for injection.

So \(y \):

\[f(x) = x^2 + 2 = y^2 + 2 = f(y) \]

\[x^2 = y^2 \]

\[x = \pm y \]

\[x = y \text{ or } x = -y \]

\(x = y \) or \(x = -y \) \(\times \)

Hence \(x = y \) so injective.
Let \(f : \mathbb{R} \to \mathbb{R} \) be given by
\[
f(x) = x^2.
\]

Test \(f \) for injectivity.

Solv:
\[
f(x_1) = x_1^2 = y^2 = f(y) \]
\[
x = \pm y
\]
\[
x = y \quad \text{or} \quad x = -y.
\]

Hence \(f \) is not injective.

\[
f(-6) = 36 = f(6).
\]

Let \(f : \mathbb{R} \to \mathbb{R} \) be
\[
f(x) = x + 1.
\]

Test \(f \) for surjectivity.

Solv:
\[
y = f(x) = x + 1.
\]
\[
x = y - 1 \quad \text{or} \quad x \in \mathbb{R}.
\]

Hence \(f \) is surjective.