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Chapter 2 : Infinite Series

Section C Properties of Convergent and Divergent Series

By the end of this section you will be able to
 prove certain properties of convergent series
 apply divergent tests to a given series
 use sum and scalar product rules for testing convergence and determine the sum of
a series

C1 Convergent Series
In this subsection we prove certain properties of convergent series. To prove these we
need to apply the following results about limits of sequences from chapter 1.
If sequences     andn nS T converge then

(1.??)      lim lim limn n n n
n n n

S T S T
  

  

(1.??)    lim limn n
n n

cS c S
 

 where c is a constant

We will be applying these results to sequences of partial sums,  nS , throughout this

section. Remember  nS , the nth partial sum, is a sequence.

Of course to prove any results about series we need to consider the general series such

as  
1

k
k

a



 rather than a particular series. For clarity of understanding we will

sometimes use the following convenient notation:

   
1

k k
k

a a a




   

It is automatically understood that both the series on the Right,    andka a  , are

identical to the infinite series on the Left. The reason for this is that many students are
lost in notation and see all these symbols and are “put off” the topic of infinite series
for good. Don’t lose yourself in all this notation, the mathematics in this section is
generally straightforward.

Proposition (2.5). If the series  
1

k
k

a



 is convergent then

 lim 0n
n

a




Note: What does this proposition mean?

It says that if the infinite series  
1

k
k

a



 converges then the terms eventually get

smaller and smaller in size and tend to zero for large k . This proposition (2.5) is
called the nth term test.
Proof. Let nS be the nth partial sum, that is the sum of the first n terms:

 1 2 3
1

...
n

n n k
k

S a a a a a
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Since we are told that  
1

k
k

a



 converges therefore  lim n

n
S


exists because

   
1

lim n k
n

k

S a





 
Let L be this limit and so

 lim n
n

S L


 (*)

As n   then 1n    therefore

 1lim n
n

S L
 (**)

as well. But we need to show

 lim 0n
n

a




How can we show this?
We need to consider  na rather than  nS . How can we write  na ?

We want to express na in terms of nS and remember nS is the sum of the first n

terms. We write na as the sum of the first n terms minus the sum of the first 1n 
terms, that is:

   

 
1

1 2 3 1 2 3 1

1

... ...

          Expressing the Sum in Terms of  '
n n

n n n

S S

n n n

a a a a a a a a a

S S S s




 



         

 

 

Since we are interested in the limiting value of na we have

   
     

   

1

1

lim lim

            lim lim     By Limits of Sequences Result (1.??)

                    By *  and **

            0

n n n
n n

n n
n n

a S S

S S

L L

 

 

 

 

    


Hence we have the required result, that is if  
1

k
k

a



 converges then  lim 0n

n
a


 .

■

However the condition

 lim 0n
n

a




is NOT sufficient for the convergent of the series  
1

k
k

a



 . That is the converse of

proposition (2.5) is NOT true. For example if we consider the harmonic series

1

1

k k





 
 
 



then
1

lim 0
n n

   
 

but the series
1

1

k k





 
 
 

 diverges. (See Example 9).

(1.??)      lim lim limn n n n
n n n

S T S T
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Hence if the series  
1

k
k

a



 is convergent then

 lim 0n
n

a


 [Terms tend to 0]

However if  lim 0n
n

a


 then the series  
1

k
k

a



 may NOT converge.

This is critical because many students wrongly think that if the nth terms eventually
go to zero then the series converges. Proposition (2.5) says that if the series converges
then the nth term eventually goes to zero. But if the nth term goes to zero as n  

that does not mean the series converges. Another example is
1

1

k k





 
 
 

 . We know

1
lim 0
n n

   
 

[Terms eventually go to Zero]

but the series
1

1

k k





 
 
 

 is divergent. You were asked to show the divergence of this

series,
1

1

k k





 
 
 

 , in question 6 of Exercise 2b.

Note that in the above we can replace the letter k by n without changing the
meaning. It does not make any difference. The letter k is a ‘dummy variable’ and can
be replaced by any symbol. For example proposition (2.5) is the following:

If  
1

n
n

a



 converges then  lim 0n

n
a


 .

The letter k was used because n represented the nth partial sum, nS .

C2 Divergent Tests

Proposition (2.6). If  lim 0n
n

a


 then  
1

n
n

a



 diverges.

Proof. This proposition is the contrapositive of proposition (2.5).
■

What does the term contrapositive mean?
We discussed contrapositive in the chapter on logic. Let   andA B be statements then
the contrapositive of
‘If A then B ’ is ‘If (not B ) then (not A )’. These are logically equivalent.

In proposition (2.5), A is the statement ‘  
1

n
n

a



 converges’ and B is the statement

‘  lim 0n
n

a


 ’. What is ‘not B ’in this case?

 lim 0n
n

a




What is ‘not A ’in this case?

 
1

n
n

a



 diverges

Hence the contrapositive of proposition (2.5) is proposition (2.6).

(2.5) If  
1

n
n

a



 converges then  lim 0n

n
a
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Proposition (2.7). If  lim n
n

a


does not exist then  
1

n
n

a



 diverges.

Proof. Suppose  
1

n
n

a



 converges then by proposition (2.5) we have

 lim 0n
n

a




This contradicts that the  lim n
n

a


does not exist. Thus proposition (2.7) is

established.
■

Note that if  lim n
n

a


is not zero or does not exist then we can conclude the series

 
1

n
n

a



 diverges.

We use propositions (2.6) and (2.7) as divergence tests for a given series.

Example 10.

Show that the series
1 1n

n

n





 
  

 diverges.

Solution. Since

Dividing Numerator1
lim lim

1 and  Denominator by1 1

1
                 1 0

1 0

n n

n

nn
n

 

 
              
 

     

Therefore by proposition (2.6) the given series
1 1n

n

n





 
  

 diverges.

Example 11.

Show that the series
2

2
1

1

5n

n

n n





 
  

 diverges.

Solution. We have

2 2

2 2

1 1 Dividing Numerator1
lim lim

55 and  Denominator by1

0 1
                     1 0

1 0

n n

n n
n n n

n
 

                


   


By proposition (2.6) the given series
2

2
1

1

5n

n

n n





 
  

 diverges.

(2.5) If  
1

n
n

a



 converges then  lim 0n

n
a




(2.6) If  lim 0n
n

a


 then  
1

n
n

a



 diverges.
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Example 12.

Show that the series  
1

1
n

n





 diverges.

Solution.

Since  lim 1
n

n
 does not exist, therefore by proposition (2.7) the given series

 
1

1
n

n





 diverges.

C3 Rules of Convergent Series

Proposition (2.8). Sum Rule. If both series    
1 1

  andk k
k k

a b
 

 
  are convergent then

 
1

k k
k

a b




 is convergent and

     
1 1 1

k k k k
k k k

a b a b
  

  

    

Proof. Let  
1

n

n k
k

S a


  and  
1

n

n k
k

T b


  . Both sequences  lim n
n

S


and  lim n
n

T


are

convergent because both series converge. Consider

   

   

   

1 1

1 1

lim

                  lim       Taking in because Finite Sums

                  lim    From Above

n

k k k k
n

k k

n n

k k
n

k k

n n
n

a b a b

a b

S T




 


 



     
        

 



 

  

     

       
1 1 1

lim lim            Applying the Limits of Sequence (1.??)

                       Because lim  and similarly for

n n
n n

k k n k k
n

k k k

S T

a b S a b

 

  


  



     
  

Hence we have our required result.
■

Proposition (2.8) is called the sum rule and is used to test the convergence of a given
series. What does proposition (2.8) mean in everyday language?

It says you can split up a series such as  a b into a + b if they both

converge. This is very useful in a series with many parts because we can examine
just one part at a time rather than the whole series in one go. It is more digestible if
you consider each part separately.
In proposition (2.8) the plus sign in the middle can be replaced by a minus sign, that is

(1.??)      lim lim limn n n n
n n n

S T S T
  

  

(2.7) If  lim n
n

a


does not exist then  
1

n
n

a



 diverges.
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 a b a b    
You are asked to prove this in Exercise 2c.

Proposition (2.9). Scalar Product Rule. If  
1

k
k

a



 converges then

   
1 1

  where  is a constantk k
k k

c a c a c
 

 

 
Proof. See Exercise 2c.

Proposition (2.9) is called the scalar product rule. We can also apply this scalar
product rule to test a given series for convergence. What does the scalar product rule
mean?

If a series  c a , where c is a constant, converges then we can take the constant c

outside the summation sign,  , that is

 c a c a 
Normally we use both these, sum and scalar product, rules together to breakdown the
given series and then analyse each series separately. In the following examples we
apply these rules.

Example 13
Test

 1

2 1

1 2

k

k k k





              


for convergence. If the series converges determine its sum.
Solution.
From Example 7 we know

 1

1
1

1k k k





 
   



This is 2 times the first part of the given series. Because
 1

1
1

1k k k





 
   

 converges

therefore we can apply the scalar product rule

(2.9)  c a c a 
Hence in the first part of the series we can take the constant 2 out and we have

       
1 1

2 1
2 2 1 2      *

1 1k kk k k k

 

 

   
            

 

What do you notice about the remaining,
1

1

2

k

k





 
 
 

 ?
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Well
1

1

2

k

k





 
 
 

 is a geometric series with a common ratio
1

2
r  and first term

1

2
a  .

Since the common ratio r is less than 1 therefore the series converges and the sum is

given by

(2.3)  1

1

     1
1

n

n

a
ar r

r






 


We have

1

1 1 2
1

2 1 1 2

k

k





      
 (**)

Since both
 1

2

1k k k





 
   

 and
1

1

2

k

k





 
 
 

 converge we can apply the sum rule

(2.8)      a b a b    
to the given series:

   
 

1 1 1

2 1 2 1

1 2 1 2

                                     2 1 3    By (*) and (**)

k k

k k kk k k k

  

  

                            
  

  

Notice how we split the series up into parts in Example 13. If the series in each part
converges then we can take out a constant and breakdown the addition (or
subtraction).
We can combine the sum and scalar product rules, that is propositions (2.8) and (2.9),
to give the following result:
Proposition (2.10). If both

k
a and

k
b converge then

       k k k kc a d b c a d b      
where  and  are constantsc d .
Also true for subtraction, that is

       k k k kc a d b c a d b      
Proof. See Exercise 2c.
What does proposition (2.10) mean?
It says you can take the  inside the addition (or subtraction) and take the constants

out provided the individual series converge. This is analogous to integration where
you can carry out the integration under the addition and take out the constants.
Generally it is easier to use (2.10) directly as the next example shows.
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Example 14
Test the following series for convergence

3 1

1

5 7

8

n n

n
n

 



 
 
 


If the series converges determine its sum.
Solution.
Do we need to apply the sum and scalar product rules to test the given series for
convergence?
Yes because we can breakdown the general term as:

 

3 1 3 1

3 1

5 7 5 7

8 8 8
Using the Rules of Indices5 7

                5 7
8 8

1 5 1 7                          †
125 8 7 8

n n n n

n n n

n n

n n m n m n

n n

a a a

   

 



 

    
            

       
   

The last line follows by using the rules of indices, 3 1
3 1

1 1 1 1
5   and  7

5 125 7 7
     .

Both
1

5

8

n

n





 
 
 

 and
1

7

8

n

n





 
 
 

 are geometric series with a common ratio
5

8
r  and

7

8
r 

respectively. Since the common ratio 1r  in both cases, these series converge and

their sum is determined by applying

(2.3)  1

1

     1
1

n

n

a
ar r

r






 


as follows:

1

5 5 8 5

8 1 5 8 3

n

n





      


1

7 7 8
7

8 1 7 8

n

n





      


We have

 

 

 

3 1

1 1

1 1

5 7 1 5 1 7          By †
8 125 8 7 8

1 5 1 7
                                 By (2.10)

125 8 7 8

1 5 1 76
                        7

125 3 7

n nn n

n
n n

n n

n n

  

 

 

 

                        

       
   

    
 

 

 

75

The last line follows from above because
1

5 5

8 3

n

n





   
 

 and
1

7
7

8

n

n





   
 

 . Hence the

given series,
3 1

1

5 7

8

n n

n
n

 



 
 
 

 , converges with sum
76

75
.
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SUMMARY

If a series ka is convergent then

 lim 0n
n

a




But the converse of this is not true. That is if  lim 0n
n

a


 then  ka may NOT

converge.

But if  lim 0n
n

a


 or it does not exist then  na diverges.

It is important to note that if  lim 0n
n

a


 then we cannot conclude whether the series

 na converges or diverges. But if  lim 0n
n

a


 , or does not exist, then we can say

 na diverges.

If  ka and  kb are both convergent then  k ka b is convergent and

(2.8)      k k k ka b a b     [Sum Rule]

(2.9)    k kc a c a  [Scalar Product Rule]

where c is a constant.

(2.10)           where  and  are constantsk k k kc a d b c a d b c d      


