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Chapter 2: Infinite Series

Section C Properties of Convergent and Divergent Series

By the end of this section you will be able to

prove certain properties of convergent series

apply divergent tests to a given series

use sum and scalar product rules for testing convergence and determine the sum of
aseries

C1 Convergent Series
In this subsection we prove certain properties of convergent series. To prove these we
need to apply the following results about limits of sequences from chapter 1.

If sequences (S,) and (T,) converge then

a7 1(S,57) =1m(S) ()
(1.2?) Ll@@(csn) = chQ(Sn) where ¢ isa constant

We will be applying these results to sequences of partial sums, (Sn) , throughout this

section. Remember (S, ), the nth partial sum, is a sequence.
Of course to prove any results about series we need to consider the general series such

¥
as é (ak) rather than a particular series. For clarity of understanding we will
k=1
sometimes use the following convenient notation:

4(a)=4(a)=4a

k=1
It is automatically understood that both the serieson the Right, § (a,) and § a, are

identical to theinfinite series on the Left. The reason for thisis that many students are
lost in notation and see all these symbols and are “put off” the topic of infinite series
for good. Don’t lose yourself in all this notation, the mathematics in this section is
generally straightforward.

¥
Proposition (2.5). If the series § (&, ) is convergent then
k=1

lim(a,)=0

n® ¥
Note: What does this proposition mean?

¥
It saysthat if theinfinite series § (a,) converges then the terms eventually get
k=1

smaller and smaller in size and tend to zero for large k. This proposition (2.5) is
called the nth term test.
Proof. Let S, bethe nth partial sum, that isthe sum of thefirst n terms:

S=ata+ta+.+a, =3 (a)
k=1
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¥
Sincewearetold that § (a,) converges therefore Ii®rQ(Sn) exists because
k=1 "

im(s)=4 ()

® ¥
k=1
Let L bethislimit and so
lim(s,)=L (*)

n® ¥

Asn® ¥ then n- 1® ¥ therefore
lim(S,.,)=L (**)

n® ¥
aswell. But we need to show

im(a,)=0
How can we show this?

We need to consider (a,) rather than (S,). How can we write (a,) ?
Wewant to express a, intermsof S, and remember S, isthe sum of thefirst n

terms. We write a, asthe sum of the first n terms minus the sum of thefirst n- 1
terms, thet is:
a,=(a+a,+a,+..+a,)- (a+a,+a,+..+a,,)
=5, =S
=S,-S., [ExpressingtheSuminTermsof S, 's|
Since we are interested in the limiting value of a, we have

im(a,)=lim(s, - S,.)

n® ¥

=1im(S,)- lim(S,,) [By Limitsof Sequences Result (1.79)]

=L-L @By (*) and (**)g
=0

¥
Hence we have the required result, that isif § (a,) convergesthen Il(FDrQ(an) =0.

k=1

However the condition
lim(a,)=0

n® ¥

¥

isNOT sufficient for the convergent of the series § (a, ). That isthe converse of
k=1

proposition (2.5) isNOT true. For example if we consider the harmonic series

aelo
gkz
then Iim +—0 but the series a _dlverg&s (See Example 9).
n®¥8nz 8
(1.7?) Ilm(Sn +T,)=1im(S,)+1lim(T,)

n® ¥ n® ¥
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¥
Hence if the series § (a,) is convergent then
k=1

lim (a,)=0 [TermstendtoO]

¥
However if I!@rg(q]) =0 then the series § (a,) may NOT converge.
" k=1

Thisis critical because many students wrongly think that if the nth terms eventually
go to zero then the series converges. Proposition (2.5) says that if the series converges
then the nth term eventually goesto zero. But if the nth term go& tozeroas N® ¥

that does not mean the series converges. Another exampleis a 8 f We know
kg

I|m

”®¥8fz

but the series a 8 f Ois divergent. Y ou were asked to show the divergence of this
K g

=0 [Terms eventually go to Zero]

series, agf_,ln question 6 of Exercise 2b.

Note that in the above we can replace the letter k by n without changing the
meaning. It does not make any difference. Theletter k isa ‘dummy variable’ and can
be replaced by any symbol. For example proposition (2.5) is the following:

¥
If na:‘l(an) converges then Ll@hg(an):o.

Theletter k was used because n represented the nth partial sum, S, .

C2 Divergent Tests
¥
Proposition (2.6). If I|®n;|(ah) 1 0 then § (a,) diverges.
" n=1

Proof. This proposition is the contrapositive of proposition (2.5).
[ |

What does the term contrapositive mean?

We discussed contrapositive in the chapter on logic. Let A and B be statements then
the contrapositive of

‘If Athen B’ is‘If (not B) then (not A)’. These are logically equivalent.

¥
In proposition (2.5), A is the statement é (an) converges’ and B is the statement
n=1

‘Ii®ng(an):0’.What is ‘not B’in this case?
i 1
im(a,)* 0
What is ‘not A’in this case?

¥
a (a,) diverges

n=1
Hence the contrapositive of proposition (2.5) is proposition (2.6).

¥
(2.5) If ria:1(an) converges then LI@I‘Q(&H) =0
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¥
Proposition (2.7). If I|®n;|(ah) does not exist then g (a,) diverges.

n=1

¥
Proof. Suppose é (an) converges then by proposition (2.5) we have

" lim(a,)=0

n® ¥

This contradicts that the lim (a,) doesnot exist. Thus proposition (2.7) is
established.

Note that if Ii®r9(an) isnot zero or does not exist then we can conclude the series
n

¥
a (a,) diverges.

n=1
We use propositions (2.6) and (2.7) as divergence tests for a given series.

Example 10.
Show that the series a 8 - dlverges
Solution. Since
& 0
) ¢ 1 - éDividing Numerator (i
||m8 ;—|| —1+ é i l;l
ne¥ &n+1g n®¥§1+7+ gand Denominator by ny;
€ ng
_wiézll 0
&1+0p

Therefore by proposition (2.6) the given series a 8 T1E dlvergeﬁ
n

Example 11.
§e®el-n” 0

Show that the series a ¢ - diverges.
n=1 e + n @

Solution. We have
@l-n* 6_ aey -10  gDividing Numerator

u
lim ’
n®¥Q n®¥ e H 2l;\j

N +5ny 91+A - é@nd Denominator by n*g
_0_1__ 11 0
1+0

§e&el-n” 0
By proposition (2.6) the given series a CZrens diverges.

n=1en +5n@

¥

(2.5) If & (a,) convergesthen Ll®ng(an) =0

n=1

¥
(2.6) If Ll@@(an) 1 0 then q (a,) diverges.

n=1
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Example 12.
¥
Show that the series § (- 1)" diverges.

n=1

Solution.

Since lim (-1)" does not exist, therefore by proposition (2.7) the given series

¥
a (-1)" diverges.

n=1

C3 Rules of Convergent Series
¥ ¥
Proposition (2.8). Sum Rule. If both series § (a,) and § (b, ) are convergent then

k=1 k=1

(a, +b,) isconvergent and

Qox

=
1

1

n® ¥

Proof. Let S, =3 (&) and T, =§ (h,) . Both sequences lim(s,) and lim(T,) are
k=1 k=1 "
convergent because both series converge. Consider

(ak+bK)"'mea(ak+ta)

"O¥ k=1
éd 3 u . . ) .. N
=limaa (a)+a (b); €Tekingin g because Finite Sumsy
nO¥ Bk=1 k=1 u
=i m[Sn +T,] [ From Above]
n® ¥
=lim (S,)+ lim (T.) [ Applying the Limits of Sequence (1.77)]

:é (ak)+é¥_ (b,) eBecaus;e lim(S,) :5 (a,) and similarly for ng
k=1 k=1 u

n® ¥ k=1

Hence we have our required result.
|

Proposition (2.8) is called the sum rule and is used to test the convergence of agiven
series. What does proposition (2.8) mean in everyday language?

It says you can split up aseriessuch as g (a+b) into § a + b if they both

converge. Thisisvery useful in a series with many parts because we can examine

just one part at atime rather than the whole seriesin one go. It is more digestible if
you consider each part separately.

In proposition (2.8) the plus sign in the middle can be replaced by aminus sign, that is

(1.2?) Ilm(Sn +T,)=1im(S,)+

li
n® ¥ n® n

im(T,)

(2.7) If Ll@@(an) does not exist then g (a,) diverges.

n=1
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a(a-b)=3a-3b
Y ou are asked to prove thisin Exercise 2c.

¥
Proposition (2.9). Scalar Product Rule. If § (a,) convergesthen

k=1

(a) wherec isaconstant

Do

¥
ac(a)=c
k=

Proof. See Exercise 2c.

iky
=
11

1

Proposition (2.9) is called the scalar product rule. We can aso apply this scalar
product rule to test agiven series for convergence. What does the scalar product rule
mean?

If aseries § c(a), where ¢ isaconstant, converges then we can take the constant ¢

outside the summation sign, § , that is

ac(a)=cg a

Normally we use both these, sum and scalar product, rules together to breakdown the
given series and then analyse each series separately. In the following examples we
apply these rules.

Example 13

Test
{ €. 2 0 aé.ou
_1§k k+1)5 82gg

for convergence. If the series converges determine its sum.
Solution.
From Example 7 we know

a2
ZE& (kD)5
o . . . e 1 0O
Thisis 2 timesthefirst part of the given series. Because g k k+1 :—1 converges
k=1

therefore we can apply the scalar product rule
(2.9) ac(a)=caa

Hencein thefirst part of the series we can take the constant 2 out and we have
¥ @@ 0’ ¥ @ 0
O 2 O 1 _: 1) :2 (*)
A +): “AEk(k+1):
¥

X
What do you notice about the remaining, § 829
k=1€<d
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k
1
Well a 8_ |sageometr|cser|e£W|th acommon ratio r :E and first term a =

Since the common ratio | | islessthan 1 therefore the series converges and the sum is
given by

¥
2.3 S arri=—2 rl<i
(23) aar=r= (<1
We have
o _ 12
i =" =1 * %
Ag5 112 )
. f@ 2 0 fade
Since both & +and — - converge we can apply the sum rule
Agk(k+): ™ 2825
(2.8) & (a+b)=3 (a)+a (b)
to the given series:
2 0 aeloU g & ¥ o

¥
“%k 1) 825 Ek(ke) k+1ij klgzg
=2+1=3 [By(*) and (**)]

Notice how we split the series up into partsin Example 13. If the series in each part
converges then we can take out a constant and breakdown the addition (or
subtraction).

We can combine the sum and scalar product rules, that is propositions (2.8) and (2.9),
to give the following result:

Proposition (2.10). If both é_ a, and é b converge then
a gc(a)+d(n)g=ca (a)+da ()

where ¢ and d are constants.
Also true for subtraction, that is

a &(a)- d(b)g=ca (a)- da (b
Proof. See Exercise 2c.

What does proposition (2.10) mean?
It says you can take the é_ inside the addition (or subtraction) and take the constants
out provided the individual series converge. Thisis analogous to integration where

you can carry out the integration under the addition and take out the constants.
Generdly it is easier to use (2.10) directly as the next example shows.
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Example 14
Test the following series for convergence

¢
n=1e
If the series converges determine its sum.
Solution.

3§ & 3+7"10
a -

Page 8 of 9

Do we need to apply the sum and scalar product rules to test the given series for

convergence?

Y es because we can breakdown the general term as:

5n-3 + 7n-1 5n-3 7n-1
= +

8n - 8“ 8|"|

_5_3a6”d+ L,a"6  éUsing the Rules of Indicesu

- _n_ an + é man m+n ltl

Gy §55 Gra-a :

_ 1850 10 (1)
T15885 7585

The last line follows by using the rules of indices, 5‘3:%:i and 7‘12%:1.
5 125 7T 7
J &50 3 ago 5 7

Both a_8 and a_8 - are geometric series with acommon ratio r = =3 and r = =38
8o

respectively. Since the common ratio |r| <1 in both cases, these series converge and
their sum is determined by applying

(2.3)

(Irf<1)
asfollows:

We have

1ae7ou
A 125885 7885

O lo ﬂo
== By (2.10
125a_188g 7 88 [By (210)]
_ 1 abo 1(7):7_6
T 125835 7 75

Thelast line follows from above because a 8 0 g
8o

a7 ; N
. o (1)

g'iw
m;T N

¥
5‘8879 =7. Hencethe
&85

¥ %n3
given series, § ¢

, 76
- converges withsum —.
n=1 e 75
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SUMMARY

If aseries § a, is convergent then

lim(&,)=0

But the converse of thisis not true. That isif lim(a,) =0 then a (a) may NOT

converge.

But if Ii®r§€1(an)1 0 or it does not exist then § (a,) diverges.

It isimportant to note that if Ii®ng (a,) =0 then we cannot conclude whether the series

a (a,) convergesor diverges. Bt if Ii®rQ(a,1)1 0, or does not exist, then we can say

a (a,) diverges.
If & (a) and & (k) are both convergent then § (&, +b,) isconvergent and
(28) a(a-+h)=a(a)+a(h)  [SumRule]

(2.9) ac(a)=ca (a) [Scalar Product Rul€]

where c is aconstant.
(2.10) a &(a)xd(b)g=ca (a)+dQ (b) wherecandd are constants



