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Chapter 2 : Infinite Series 
 

Section G Alternate Series 
 
By the end of this section you will be able to 
• understand what is meant by alternating series 
• proof the alternating series test 
• test an alternating series for convergence 
• establish whether a function is increasing or decreasing 
• show that a given alternating series converges 
• prove properties of a general alternating series 
 
 
G1 Alternate Series 
Until now we have only investigated infinite series ( )na∑ where  have all been 
positive or zero, that is for all , . 

na
n∈ 0na ≥

In this section we examine the infinite series ( )na∑  where some of the terms may be 
negative. For example 

1 1 1 1 11 ...
2 3 4 5 6

− + − + − +   (*) 

is an alternating series because positive and negative terms alternate between each 
other. How do we write this series (*) in compact ∑ format? 

( ) 1

1

1 1 1 1 1 11 ...
2 3 4 5 6

n

n n

∞
+

=

⎛ ⎞− + − + − + = − ⎜ ⎟
⎝ ⎠

∑ 1  

Can you think of any other examples of alternating series? 
The following are all alternating series: 

( ) 1
2

1

1 1 1 1 1 1... 1
4 9 16 25 36

n

n n

∞
+

=

⎛ ⎞− + − + − = − ⎜ ⎟
⎝ ⎠

∑  

( ) 2
1

1 1 1 1 1 11 ...
4 9 16 25 36

n

n n

∞

=

⎛ ⎞− + − + − + − = − ⎜ ⎟
⎝ ⎠

∑ 1  

0

1 1 1 1 1 11 ...
2 4 8 16 32 2

n

n

∞

=

−⎛ ⎞− + − + − + = ⎜ ⎟
⎝ ⎠

∑  

However the following is not an alternating series: 
1 1 1 1 1 11 ...
2 3 4 5 6 7

− − + + − − +  

because we have two negative terms and then two positive terms. 
A series of the form  where ( )( )11 n

na+−∑ na +∈  is an alternating series. The 

 gives positive or negative sign of the term .  ( ) 11 n+− na

In the above examples  is na 21 ,   1  and  1 2nn n  respectively.  
We need to establish a test for alternating series because all previous tests cannot be 
applied to these series.Testing an alternating series is challenging because it involves 
checking three conditions given below. The first condition is straightforward and can 
be tested by inspection of the series. However checking the other two conditions 
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involves a lot more work because we need to use techniques such as evaluating a limit 
and establishing a general inequality. 
 
Alternating Series Test (2.17). 
Let  be a series and  satisfy the following: ( )( 11 n

na+−∑ ) na

1)  for all  0na > n∈
2)  ( )lim 0nn

a
→∞

=

3)  for all  1na + < na n∈

then the alternating series  converges. ( )( 11 n
na+−∑ )

Note: What does the alternating series test say? 
It says that if  of the general term  ( )  satisfy all three conditions above na 11 n

na+−

then the alternating series  converges. What do the three conditions ( )( 11 n
na+−∑ )

mean? 
1) Means  are all positive. 1 2 3 4 5,   ,   ,   ,   ,   ..., ,   ...na a a a a a
2) Means the nth term converges to zero. 
3) Means (n+1)th term, ,  is less than the nth term, . That is 1na + na

2 1 3 2 4 3 5 4 6 5,   ,   ,   ,   ,...a a a a a a a a a a< < < < <  
the present term is smaller than the previous term in the series. It says that (  is a )na
decreasing sequence. The  is getting smaller as  is getting larger. na n

Notice that we examine conditions on the term  and not on . Are there na ( ) 11 n
na+−

any limitations of the test? 
Yes this test will only tell us whether a given series converges and not when it 
diverges. Also if any of the conditions are not satisfied then we cannot conclude 
whether the series converges or diverges and we have to apply another test. 
Proof. 
Consider a general alternating series which satisfies the given three conditions: 

( )( )1
1 2 3 4 5

1

1 ...n
n

n

a a a a a a
∞

+

=

− = − + − +∑ −  

What do we need to prove? 
We need to show this alternating series converges. How? 
By considering partial sums. Let KS  be the Kth partial sum 

1 2 3 4 5 ...  K KS a a a a a a= − + − + −  
What is 2Kth partial sum, 2KS , equal to? 

2 1 2 3 4 5 2 2 2 1 2... K K KS a a a a a a a a− −= − + − + − − + − K    (†) 
This can be rewritten as 

( ) ( ) ( )2 1 2 3 4 5 2 2 2 1 2... K K KS a a a a a a a a− −= − − − − − − − − K  (††) 

All the bracketed terms, ( ) ( )2 3 4 5,   ,   a a a a− − etc  are positive. Why? 
Because by condition 3) we have a decreasing sequence  

3 2 5 4 2 1 2,  ,  ... , K Ka a a a a a 2− −< < <  
and all the ’s are positive by condition 1). Therefore  na
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            [2Kth partial sum is less than the first term ] 2KS < 1a 1a
Why? 
Because 2KS  is equal to  minus positive terms (see (††)). Hence 1a 2KS  is bounded. 
Also ( 2 )KS  is an increasing sequence because by rewriting (†) we have 

( ) ( ) ( ) ( )2 1 2 3 4 5 6 2 1 2... K K KS a a a a a a a a−= − + − + − + + −  
and each bracketed term is positive. Why? 
Because by condition 3) we have 1na + na<  so therefore  

2 1 4 3 6 5 2 2,   ,   ,  ...,  K Ka a a a a a a a 1−< < < <  
Hence ( 2 )KS  is a bounded monotonic (increasing) sequence therefore by the 

monotonic sequence theorem, (1.??), the sequence ( )2KS  converges. Let 

( )2lim KK
L S

→∞
= . But what about if the sum ends with an odd subscript such as 2 1K + ? 

Consider . What is the (2 1KS + )2 1K + th partial sum, 2 1KS + ,  equal to? 

( )2

2 1 1 2 3 4 5 2 1 2 2

  by †

2 2 1

... 

       
K

K K

S

K K

S a a a a a a a a

S a

+ −

=

+

= − + − + − + − +

= +

1K K+

 

How do we work out the limiting value of this? 
( ) ( ) [ ]

( ) ( )
2 1 2 2 1

2 2 1

 (From Above) 0

lim lim                    From Above

                 lim lim

K K KK K

K KK K

L

S S a

S a L

+ +→∞ →∞

+→∞ →∞

= =

= +

= + =  

Why is ( )2 1lim 0KK
a +→∞

= ? 

Because condition 2) says ( )lim 0nn
a

→∞
= . Since ( ) ( )2 2 1lim limK KK K

S S +→∞ →∞
L= =  therefore 

by proposition (1.??) we have ( )lim nn
S

→∞
L=  that is 

( )( )1
1 2 3 4 51 ...n

na a a a a a L+− = − + − + − =∑  

We have proven that if the alternating series, ( )( )11 n
na+−∑ , satisfies the given three 

conditions then it converges.  
■ 

 
G2 Testing Alternate Series 
 
Example 37 
Test the following series for convergence: 

( ) 1

1

1
4 1

n

n n

+∞

=

⎛ ⎞−
⎜ ⎟
⎜ ⎟−⎝ ⎠

∑  

Solution 
What type of series do we have? 
Clearly it is an alternating series because 
 
(1.??)    A bounded monotonic sequence converges. 
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(1.??)     If ( ) ( )2 1 2lim limK KK K
x x+→∞ →∞

= = L  then  ( )lim nn
x L

→∞
=  

( ) ( )
( )

( )
( )

( )
( )

( )
( )

( ) ( )

1 2 3 4 5

1

1 2 3 4

1

1 1 1 1 1
...

4 1 4 1 1 4 2 1 4 3 1 4 4 1

11 1 1 1                    ... ...           †
3 7 11 15 4 1

n

n

n n n n

n

n

n

+∞

=

= = = =

+

⎛ ⎞− − − − −
= + + +⎜ ⎟

⎜ ⎟− × − × − × − × −⎝ ⎠

−
= − + − +

−

∑
 

How do we test this series? 

By applying the alternating series test, (2.17). Let 1
4 1na

n
=

−
 then we need to check 

the three conditions of the test for the given series to converge. 

1) Well 1 0
4 1na

n
=

−
>  [Positive] for all n∈  

2) Need to check . Substituting ( )lim 0nn
a

→∞
= 1

4 1na
n

=
−

 gives 

1lim 0
4 1n n→∞

⎛ ⎞ =⎜ ⎟−⎝ ⎠
 

Thus condition 2) is also satisfied.  
3) Need to check that the  terms are decreasing, that is na 1na a+ n< . Is it enough to 

look at (†) and say 1 1 1...
15 11 7 3

< < <
1  therefore we have a decreasing sequence? 

No we have to show the general inequality 1n na a+ < . 

First we determine  by substituting 1na + 1n+  for n  in 1
4 1na

n
=

−
: 

( )1
1 1

4 1 1 4na
n n+ = =

3+ − +
 

[ ]1  4 3 4 1         Comparing Denominators of  and  

1 1 1 1       Because  implies 
4 3 4 1

n nn n a a

x y
n n x y

++ > −

⎡ ⎤
< > <⎢ ⎥+ − ⎣ ⎦

 

Hence 1
1 1

4 3 4 1n naa
n n+ = < =
+ − 1n na a+ that is <  is satisfied. 

Since all three conditions are satisfied therefore by the alternating series test (2.17) the 

given series ( ) 1

1

1
4 1

n

n n

+∞

=

⎛ ⎞−
⎜
⎜ −⎝ ⎠

∑ ⎟
⎟

 converges. 

 
Example 38 
Discuss the convergence or divergence of the following series: 

( ) 11
2 1

n n
n

+⎛ ⎞−
⎜ ⎟
⎜ ⎟+⎝ ⎠

∑  

Solution. 
Do we have an alternating series? 
Yes because the general term contains ( ) 11 n+−  which alters between positive and 
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negative signs for each n. Let 
2 1n

na
n

=
+

 then  is positive for all  so na n∈

condition 1) of the alternating series test is satisfied. What do we do next? 
Check condition 2) that is ( )lim 0nn

a
→∞

= . How? 

Substituting 
2 1n

na
n

=
+

 we have 

( )

( ) [ ]

lim lim
2 1

Dividing Numerator 1            lim       
and Denominator by 2 1

1 1 1            0    Not Zero
2 lim 1 2 0 2

nn n

n

n

na
n

nn

n

→∞ →∞

→∞

→∞

⎛ ⎞= ⎜ ⎟+⎝ ⎠
⎛ ⎞ ⎡ ⎤

= ⎜ ⎟ ⎢ ⎥+ ⎣ ⎦⎝ ⎠

= = = ≠
+ +

 

Since condition 2) is not satisfied therefore there is no point checking condition 3). 
We need to apply another test to check for convergence but which one? 
The given series might diverge therefore it is worth checking that the nth term does 
not converge to zero. 

( ) ( )1 11 1
lim lim

2 1 2 1

n n

n n

n
n n

+ +

→∞ →∞

⎛ ⎞ ⎛− −
=⎜ ⎟ ⎜

⎜ ⎟ ⎜+ +⎝ ⎠ ⎝

⎞
⎟
⎟
⎠

 

This limit does not exist because of ( ) 11 n+−  therefore cannot equal zero. Hence by 

(2.6) the given series ( ) 11
2 1

n n
n

+⎛ ⎞−
⎜
⎜ +⎝ ⎠

∑ ⎟
⎟

 diverges. 

 
G3 Increasing and Decreasing Theorem 
The difficulty with using the alternating series test is to show condition 3) that is the 
decreasing inequality . It is not an easy task to show this general inequality. 
However we can use a theorem from differentiation for this purpose. The following 
theorem and the rest of this subsection is a digression from infinite series but we need 
it so that we can apply the alternating series test to a wide range of series.  

1na + < na

Increasing and Decreasing Theorem (2.18).  
Let  be real numbers with ,   a b a b< . Let [ ]: ,f a b →  be a function which is 

differentiable on [ . Then ],a b

(I) ( ) 0f x′ >  for all ] [,x a b∈   ⇒    f  is increasing on [ ],a b  

(II) ( ) 0f x′ <  for all ] [,x a b∈   ⇒    f  is decreasing on [ ],a b  
Proof. Omitted.  
What does theorem (2.18) mean? 
Part (I) means that if the derivative of f  is positive in the interval  then ] ,a b[ f  is 

increasing in . What does[ ,a b] f  is increasing mean? 
We say a function f  is (strictly) increasing if 

( ) ( )f y f x>   whenever   y x>
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(2.6)  If ( )li  then m 0nn
a

→∞
≠ ( )na∑  diverges 

To be pedantic the theorem should say strictly increasing and strictly decreasing. In 
this section when we are referring to increasing or decreasing we mean strictly 
increasing and strictly decreasing respectively. What is the difference? 

Strictly Increasing ( ) ( )f y f x>   whenever  y x>    

Increasing ( ) ( )f y f x≥   whenever   y x>

That is for strictly increasing, ( )f y is strictly greater than ( )f x , whilst for 

increasing, ( )f y is greater than or equal to ( )f x  whenever . y x>
In general if we have a positive derivative then the function is increasing. 
Examples of increasing functions are ( ),     and  lnxx e x  as you can observe in the 
following graphs: 

          

xe  
x  

(a)        (b) 

   

( )ln x  

(c) 
Fig 3 

What does part (II) of theorem (2.18) mean? 
Part (II) means that if the derivative of f  is negative in the interval ]  then [,a b f  is 

decreasing in . What does decreasing mean? [ ,a b]
We say a function f  is decreasing if 

( ) ( )f y f x<   whenever   y x>
Remember we are talking about strictly decreasing functions.  
In general if the derivative is negative then the function is decreasing.  
Examples of decreasing functions are x− , xe−  and (1   0xx )≠  as you can observe 

in the following graphs: 
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x−  xe−  

(b)  (a)  

 

1
x

 

Fig 4 

(c) 
Next we use the theorem to establish whether the given functions are increasing or 
decreasing. 
Example 38 
Show that logarithmic function, ( )ln x ,  is increasing for . 0x >
Solution. 
Let ( ) ( )lnf x x=  for . Then 0x >

( ) ( )Because Differentiating ln1        
gives  1

x
f x

x x
⎡ ⎤

′ = ⎢ ⎥
⎣ ⎦

 

Since ( ) 1 0f x
x

′ = >  for  therefore by theorem (2.18) part (I) the function 0x > ( )ln x  

is increasing for . Remember positive derivative gives an increasing function. 0x >
 
Example 39 

Show that ( )sin x  is  increasing in the interval 0,
2
π⎡ ⎤

⎢ ⎥⎣ ⎦
. 

Solution. 

Let ( ) ( )sinf x x=  for 0,
2

x π⎤∈⎥⎦ ⎣
⎡
⎢  then 

( ) ( ) [ ]cos        Differentiatingf x x′ =  

Now ( )cos x  is positive for all x  in the interval 0,
2
π⎤ ⎡

⎥ ⎢⎦ ⎣
. We have  ( ) ( )cos 0f x x′ = >

for  0,
2

x π⎤∈⎥⎦ ⎣
⎡
⎢  therefore by theorem (2.18) part (I) the function ( )sin x  is  increasing 

in the interval 0,
2
π⎡ ⎤

⎢ ⎥⎣ ⎦
. 
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Example 40 
Show that ( )cos x  is decreasing in the interval [ ]0,π . 
Solution. 
Let ( ) ( )cosf x x=  for ] [0,x π∈  then 

( ) ( ) [ ]sin        Differentiatingf x x′ = −  

(2.18)  Part (I)     ( ) 0f x′ >  for all ] [,x a b∈      ⇒ f  is increasing on [ ]  ,a b
 

Because ( )sin x  is positive for ] [0,x π∈  therefore ( )sin x−  is negative in this 
interval.  Hence  

( ) ( )sin 0f x x′ = − <  for all ] [0,x π∈     

Therefore by theorem (2.18) part (II) the function ( ) ( )cosf x = x  is decreasing in the 

interval [ ]0,π . Remember negative derivative gives a decreasing function. 
 
G4 Showing Convergence of an Alternate Series  
We can now use the Increasing and Decreasing Theorem (2.18) to apply the 
alternating series test to a much wider range of series. This is a difficult task because 
you need to check all three conditions of alternating series test (2.17) and in checking 
these you need to apply theorem (2.18). Additionally you have to know what is meant 
by the terms increasing and decreasing functions.  
Let’s go back and do some more examples in this field by using theorem (2.18) to 
establish condition 3), the decreasing inequality 1na a+ n< , of the alternating series 
test. 
 
Example 41 
Show that the following series converges: 

( ) 1 11 lnn n
n

+⎛ +⎛ ⎞− ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∑ ⎞  

Solution. 
Is the given series an alternating series? 
Yes because it has the term ( ) 11 n+− . We need to use the alternating series test (2.17) 
which means we have to check all three conditions. Let  

1 1ln ln 1n
na

n n
+⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
+        1 1Because 1n n

n n n n
+ 1⎡ ⎤= + = +⎢ ⎥⎣ ⎦

 

1) For all  the terms n∈ 1ln 1na
n

⎛= +⎜
⎝ ⎠

⎞
⎟  are positive so condition 1) is satisfied.  

2) We need to check : ( )lim 0nn
a

→∞
=

( ) ( )1lim lim ln 1 ln 1 0nn n
a

n→∞ →∞

⎡ ⎤⎛ ⎞= + = =⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 

Hence condition 2) is satisfied. What else do we need to check? 
3) We need to check that we have a decreasing sequence ( )na  that is  for all 1na + < na
n∈ . How? 
What is  equal to in this example? 1na +
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Substituting  for n in 1n+ 1ln 1na
n

⎛= +⎜
⎝ ⎠

⎞
⎟  gives 

1
1ln 1

1na
n+

⎛ ⎞= +⎜ ⎟+⎝ ⎠
 

Since  
 (2.18)       Part (II)     ( ) 0f x′ <  for all ] [,x a b∈     ⇒ f  is decreasing on [ ]  ,a b

( ) ( )

            1
1 1 1 1                                  Because  implies  

1
Because ln is an increasing function,1 1ln 1 ln 1          

  implies  ln ln1

n n

a b
n n a b

x y x yn n

+ >

⎡ ⎤< >⎢ ⎥+ ⎣ ⎦
<

⎡ ⎤⎛ ⎞ ⎛ ⎞+ < + ⎢ ⎥⎜ ⎟ ⎜ ⎟ < <+⎝ ⎠ ⎝ ⎠ ⎣ ⎦

 

We have already shown that the logarithmic function, ( )ln x , is an increasing function 
for  in Example 38. Hence  0x >

1
1 1ln 1 ln 1

1na
n n+

⎛ ⎞ ⎛ ⎞= + < + =⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠
na       

condition 3) is satisfied.  
All three conditions are met therefore by the alternating series test (2.17) the given 

series ( ) 1 11 lnn n
n

+⎛ ⎛− ⎜⎜ ⎟⎝ ⎠⎝ ⎠
∑ + ⎞⎞

⎟  converges. 

 
Example 42 

Show that the series ( )( )
2

1 n n

n

ne
∞

−

=

−∑  converges. 

Solution. 
We have an alternating series because 

( )( ) ( ) ( ) ( ) ( )2 3 4 52 3 4

2

2 3 4 5

1 1 2 1 3 1 4 1 5

2 3 4 5 1                       ...     Rewriting 

n n

n

n
n

ne e e e e

e
e e e e e

∞
− − − −

=

−

− = − + − + − + −

⎡ ⎤= − + − + =⎢ ⎥⎣ ⎦

∑ 5 ...− +
 

To test this series for convergence we need to apply the alternating series test (2.17). 
What is  equal to in this case? na

It is the general term in the series without ( )1 n−  hence  n
n n

na ne
e

−= = .  

1) For all  (because the series starts at 2n ≥ 2n = )   0     [Positive]na >
Hence condition 1) is satisfied. What else do we need to check? 
2) Check that  ( )lim 0nn

a
→∞

=  

Substituting n
n n

na ne
e

−= =  gives 
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( )

[ ]

( )

lim lim

1            lim      By L' Hopital's Rule (1.??)

1            0
lim

n nn n

nn

n

n

na
e

e

e

→∞ →∞

→∞

→∞

⎛ ⎞= ⎜ ⎟
⎝ ⎠
⎛ ⎞= ⎜ ⎟
⎝ ⎠

= =

 

 

(1.??)    L’Hopitals Rule       ( )
( )

( )
( )

lim lim
n n

f n f
g n g n→∞ →∞

⎛ ⎞ ⎛ ′
=⎜ ⎟ ⎜⎜ ⎟ ⎜ ′⎝ ⎠ ⎝

n ⎞
⎟⎟
⎠

 

Therefore condition 2) is satisfied.  
3) Next we need to check the inequality 1n na a+ <  for . How? 2n ≥
Since  we consider the function  n

na ne−=

( ) xf x xe−=      
If we can show that f  is a  decreasing function then we have the decreasing sequence 
( )na  which means . But how do we show this? 1na + < na
By applying the increasing and decreasing theorem (2.18) to the function 
( ) xf x xe−= . Differentiating  ( ) xf x xe−=  by using the product rule we have 

( ) ( ) ( ) ( ) ( )

( ) [ ]

( )

1     The product rule  

                        
                        1                 Factorizing

1                                       Re

x x x

x x

x

x

f x xe e x e uv u v uv

e xe
e x

xf x
e

− − −

− −

−

′ ⎡ ⎤′′ ′= = + − = + ′⎢ ⎥⎣ ⎦
= −

= −

−′ =
1writing  x

xe
e

−⎡ ⎤=⎢ ⎥⎣ ⎦

 

For 1x >  the numerator 1  but the denominator  therefore 0x− < 0xe >

( ) 1 0   for  1x

xf x x
e
−′ = < >  

Since we have a negative derivative for 1x >  so by theorem (2.18) part (II) the 
function ( ) xf x xe−=  is decreasing for 1x > . Therefore  

n
na ne−=         

is decreasing for  and because n is a integer so 1n > ( )na  is a decreasing sequence for 
2n ≥ . 

All three conditions of the alternating series test are satisfied, so by (2.17) the given 

series ( )( )
2

1 n n

n

ne
∞

−

=

−∑  converges. 

 

In the last example the series, ( )( )
2

1 n n

n

ne
∞

−

=

−∑  , started from 2n =  but of course the 

series would also be convergent if we started at 1n = . Why? 
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Because at  we have a finite value, 1n = 11 1 e e 1− −− × × = − , and since the infinite series 

 converges therefore adding a finite value to the sum does not make 

any difference to the convergence. We can somewhat relax the conditions of the 
alternating series test given in (2.17) above: 

( )(
2

1 n n

n

ne
∞

−

=

−∑ )

Alternating Series Test (2.17). Let ( )( )11 n
na+−∑  be a series and  satisfy the 

following: 
na

1)  for all  0na > n∈
2)  ( )lim 0nn

a
→∞

=

3)  for all  1na + < na n∈

  (2.18)       Part (II)     ( ) 0f x′ <  for all ] [,x a b∈     ⇒ f  is decreasing on [ ]  ,a b

then the alternating series  converges. ( )( 11 n
na+−∑ )

na

)

Conditions 1) and 3) can be relaxed to 
1)  eventually 0na >
3)  eventually 1na + <
That is the terms, , are eventually positive and decreasing. We can rewrite the 
Alternating Series test as: 

na

Corollary (2.19). Let  be a series and  satisfy the following: ( )( 11 n
na+−∑ na

1)  for all  for some natural number 0na > n M≥ M  
2)  ( )lim 0nn

a
→∞

=

3)  for all  for some natural number 1na + < na n K≥ K  

then the alternating series  converges.  ( )( 11 n
na+−∑ )

Proof. See Exercise 2(g). 
It is same as alternating series test (2.17) but conditions 1) and 3) are relaxed to  

na  being eventually positive and decreasing. It is possible that  in the series is 
negative or increasing for a finite number of values and eventually it satisfies the 
given conditions but the series will still converge. This is why we relax conditions 1) 
and 3). 

na

 
Example 43 
Show that the following series converges: 

( ) ( )1 ln
1 n n

n
+⎛ ⎞

−⎜ ⎟
⎝ ⎠

∑  

Solution. 
We have an alternating series so we need to apply the alternating series test or it’s 

corollary above. Let ( )ln
n

n
a

n
= . 

1) For all  the terms  [Positive] so condition 1) is satisfied.  n∈ 0na >

2) Need to check condition 2) that is ( )lim 0nn
a

→∞
= : 
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( ) ( )

[ ]

ln
lim lim

1            lim         Applying L' Hopital's Rule
1

1            lim 0

nn n

n

n

n
a

n

n

n

→∞ →∞

→∞

→∞

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
⎛ ⎞= ⎜ ⎟
⎝ ⎠
⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

Hence condition 2) is satisfied.  

3) We have to show that the sequence ( )ln
n

n
a

n
=   is decreasing.  

(1.??)  L’Hopitals Rule   ( )
( )

( )
( )

lim lim
n n

f n f
g n g n→∞ →∞

⎛ ⎞ ⎛ ′
=⎜ ⎟ ⎜⎜ ⎟ ⎜ ′⎝ ⎠ ⎝

n ⎞
⎟⎟
⎠

 

Let ( ) ( )ln x
f x

x
=  then differentiating this by using the quotient rule we have 

 
( ) ( ) ( )( )

( ) [ ]

2 2

2

1 ln 1ln
     By the Quotient Rule   

1 ln
                                              Simplifying Numerator

x xx u u v uvxf x
x x v

x

v

x

⎛ ⎞ −′ ⎜ ⎟ ⎡ ⎤′⎛ ⎞ ′ ′−⎛ ⎞⎝ ⎠ ⎢ ⎥′ = = =⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠ ⎣ ⎦
−

=

 

The denominator of ( )f x′  is 2x  and is therefore positive for 0x ≠ . The numerator 

( )1 ln 0x− <  [Negative] for  

( )ln 1   which gives   x x e> >  

We know  so for ( )ln 1e = ( )ln 1x >  we need x e>  because ln is an increasing 
function. 
Hence ( ) 0f x′ <  for x e> . The derivative is negative for x e>  so by theorem (2.18) 

part (II)  the function ( ) ( )ln x
f x

x
=  is decreasing for x e> . Therefore  

( )ln
n

n
a

n
=  

is a decreasing sequence for  and because  is a whole number so  is a n e> n ( )na
decreasing sequence for .   3n ≥
Hence all three conditions of the corollary (2.19) are satisfied therefore the given 

alternating series ( ) ( )1 ln
1 n n

n
+⎛ ⎞

−⎜ ⎟
⎝ ⎠

∑  converges. 

Note that in Example 43 we used the corollary (2.19) because  started decreasing 

from  and not from . In fact 

na

3n ≥ 1n = ( ) ( )
2 1

ln 2 ln 1
2 1

a a= > =  in Example 43. 

 
G5 Properties of Alternating Series 
Proposition (2.20).  
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Let  and (  be a decreasing sequence with na +∈ )na ( )lim 0nn
a

→∞
= . Then 

( )( )1
11 n

n n na S a+
+− − ≤∑  

where  is the nth partial sum given by nS

( )( )1

1

1
n

k
n k

k

S a+

=

= −∑  

Proof.  
Since  is positive and a decreasing sequence with ( )na ( )lim 0nn

a
→∞

=  therefore it 

satisfies the three conditions of the alternating series test (2.17) so it converges. Let  

( )( )1
1 2 3 4 51 ...n

nS a a a a a+= − = − + − + −∑ a  

What do we need to prove? 
 (2.18)       Part (II)     The derivative of f  is negative so it is decreasing on [ ]  ,a b

We are required to prove 1n nS S a +− ≤ . What is nth partial sum, ,  equal to? nS

( )( ) ( )1 1
1 2 3 4

1

1 ... 1
n

k n
n k

k
S a a a a a+ +

=

= − = − + − + −∑ na  

Substituting  and  into 1 2 3 4 5 ...S a a a a a= − + − + − ( ) 1
1 2 3 4 ... 1 n

n nS a a a a a+= − + − + −

nS S−  gives  

( ) ( ) ( )

( )( ) ( )( ) ( )( ) ( )( ) [ ]

( )

1 2 1
1 2 3 1 1 2 3 4

2 3 4 5
1 2 3 4

2
1 2 3 4 5

... 1 1 ... ... 1

          1 1 1 1 ...        Subtracting Terms

         1 ...           

n n n
n n n n

n n n n
n n n n

n
n n n n n

S S a a a a a a a a a a

a a a a

a a a a a

+ + +
+

+ + + +
+ + + +

+
+ + + + +

⎡ ⎤ ⎡− = − + − − + − + − − + − + −⎣ ⎦ ⎣

= − + − + − + − +

= − − + − + −
( )

⎤
⎦

( )

2

2
1 2 3 4 5

Taking Out Common Factor 
         

of 1  and Using 

         ...       Because 1 1

n

n
n n n n n

xy x y

a a a a a

+

+
+ + + + +

⎡ ⎤
⎢ ⎥

− =⎢ ⎥⎣ ⎦
⎡ ⎤= − + − + − − =
⎣ ⎦

But how do we show 
1 2 3 4 5 ...n n n n n na a a a a a+ + + + +− + − + − ≤ 1+ ? 

Rewriting the expression inside the bars: 
( ) ( )1 2 3 4 5 1 2 3 4 5... ...n n n n n n n n n na a a a a a a a a a+ + + + + + + + + +− + − + − = − − − − −  

ALL the bracketed terms in the Right Hand Side , ( ) ( )2 3 4 5,     etcn n n na a a a+ + + +− −  are 

positive because (  is a decreasing sequence. Hence we have the required result. )na

( ) ( )1 2 3 4 5 ...n n n n na a a a a a+ + + + +− − − − − ≤ 1n+  
We have proven  

( )( )1
11 n

n n na S a+
+− − ≤∑  

■ 
 
We prove other properties of the alternating series in Exercise 2(g) 
 
SUMMARY 
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A series of the form  where ( )( )11 n
na+−∑ na +∈  is an alternating series. 

Alternating Series Test (2.17). Let ( )( )11 n
na+−∑  be a series and  satisfy the na

following: 
1)  for all  0na > n∈
2)  ( )lim 0nn

a
→∞

=

3)  for all  1na + < na n∈

then the alternating series  converges. ( )( 11 n
na+−∑ )

We can relax conditions 1) and 3) to  is eventually positive and decreasing. na
To establish inequality 3) sometimes involves using the Increasing and Decreasing 
Theorem (2.18) from Differentiation. The gist of this theorem is that  if the derivative 
is positive then we have an increasing function but if the derivative is negative then 
we have a decreasing function. 


