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SECTION E Applications of Determinant

By the end of this section you will be able to
 apply Cramer’s rule to solve linear equations
 determine the number of solutions of a given linear system

In this section we examine an alternative method for solving linear systems of equations.
Cramer’s rule allows us to find the solution to a system of equations without having to find
the inverse, as it is based entirely on determinants.

E1 Cramer’s Rule

In this section we first state Cramer’s rule and then show how this rule can be used to solve
linear systems of equations. Remember a linear system of equations can be written in
matrix form as Ax b , where A is an m by n matrix and x and b are column vectors, that
is; an n by 1 matrix. For example we can write the following linear system of equations:

2 3 7 4

3 5 11 6

7 6 9

x y z

x y z

x y z

  
  
  

in matrix form as Ax b where
2 3 7 4

3 5 11 ,   and  = 6

7 6 1 9

x

y

z

     
            
          

A x b

How can we solve this linear system of equations?
In previous chapters we discussed various techniques to solve linear systems such as;
Gaussian elimination, reduced row echelon form (rref), the ‘inverse matrix’ method, LU
factorization etc.
Cramer’s rule gives a formula for solving small n by n linear systems by calculating a
series of determinants. This often leads to some much simpler arithmetic. On the downside,
it becomes inefficient for large systems because it involves evaluating numerous
determinants, and there is no easy way to work out the determinant of a large matrix.

Figure 1 Gabriel Cramer 1704 to 1752

Gabriel Cramer was born in 1704 in Geneva, Switzerland and
by the age of 18 he had received a doctorate on the theory
of sound.
In 1724 he attained the chair in mathematics at Academie
de Clavin in Geneva and taught geometry and mechanics.
Cramer is popularly known in mathematics circles for his
contribution to linear algebra, appropriately called ‘Cramer’s
Rule’ which was described in his famous book; Introduction
to the Analysis of Algebraic Curves. This rule was known to
other mathematicians of that era but his superior notation
is the reason it is credited to him.

Cramer worked very hard throughout his life, writing books in his spare time and carrying
out other editorial work. However, a fall from carriage combined with many years of
relentless study contributed to his death at the age of 47.
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Additionally, we can only apply Cramer’s rule to an n by n linear system because we
cannot evaluate the determinant of a non-square matrix.
Before we state Cramer’s rule we need to introduce some new notation. Let A be an n by n
matrix and b be a n by 1 column vector. The notation  kA b replaces the kth column of

matrix A by the column vector b. This means that we have:

 

11 1 1

21 2 2

1

n

n
k

n n nn

a b a

a b a

a b a

 
 
 
 
 
 

A b

 
 

    
 

Therefore  1A b means the first column in matrix A is replaced by the b’s.

What does  2A b mean?

The second column in matrix A is replaced by the b’s. What does  5A b mean?

The fifth column in matrix A is replaced by the b’s.

Cramer’s Rule (6.31).
Let A be an n by n matrix with the entries nominated  by ija and b be a n by 1 column

vector. The system of linear equations Ax b has the unique solution:

  
 
1

1

det

det
x 

A b

A
,

  
 
2

2

det

det
x 

A b

A
,

  
 
3

3

det

det
x 

A b

A
, … and

  
 

det

det
n

nx 
A b

A

  det 0A [not equal to zero].

How do we prove this result?
We have  symbol in the statement which means we need to prove it both ways,  and
 . First we prove from right to left  . How do we prove this part?
We assume  det 0A and from this we deduce the above equations for the unknowns 1x ,

2x , … , nx . We are given the linear system Ax b and  det 0A which means that A is

invertible and by the following result of chapter 1 we have the solution x is given by:

(1.36) 1x A b

What is inverse matrix 1A equal to?
This was defined in Proposition (6.13):

Proposition (6.13). If  det 0A then
   1 1

det
adj A A

A
.

We use these Propositions (1.36) and (6.13) to prove Cramer’s rule. In order to use
Proposition (6.13) we need to know what is meant by cofactor and adjoint which were
defined earlier:

Definition (6.4). The cofactor ijC of the entry ija is defined as  1
i j

ij ijC M
  where ijM

is the minor of entry ija .

Definition (6.9). The adjoint is the cofactor matrix transposed;   Tadj A C .

We are going to use these definitions and propositions to prove Cramer’s rule. If you are
not confident in applying these then you will need to go back and see exactly what they
mean before embarking on the proof of this result.

kth Column
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Proof.

  . We assume that  det 0A and prove the result for 1x (x one) and then generalize

to the remaining unknowns. From the given linear system Ax b , we have by the inverse
matrix method, Proposition (1.36), 1x A b where

   1 1

det
adj A A

A
[This was defined in Proposition (6.13)]

What does  adj A represent?

 adj A is the adjoint matrix and by (6.9) this is the cofactor matrix transposed, that is

 

11 21 1

12 22 2

1 2

n

n

n n nn

C C C

C C C
adj

C C C

 
 
 
 
 
 

A




   


where C’s are cofactors

By Definition (6.4) the cofactor of an entry is the place sign times the determinant of the
remaining matrix after deleting the row and column containing that entry. The cofactors
C’s are given by:

   

11 12 1
22 2

1 1 1 121 22 2
11

2
1 2

1 det 1 det

n
n

n

n nn
n n nn

a a a
a a

a a a
C

a a
a a a

 

 
  
             

 





  

   




(†)

   

11 12 1 12 1

2 1 2 121 22 2 32 3
21

1 2 2

1 det 1 det

n n

n n

n n nn n nn

a a a a a

a a a a a
C

a a a a a

 

  
  
     
  
  

   

 
 

     
 

(††)

   
  

11 12 1
12 1

1 121 22 2
1

( 1)2 1 1
1 2

1 det 1 det

n
n

n nn
n

n n n
n n nn

a a a
a a

a a a
C

a a
a a a

 

  

                   







  
   




(†††)

By applying Proposition (6.13)
    1 1

det
adj x A b A b

A
we have

 

 

1 11 21 1 1

2 12 22 2 2

1 2

1 11 2 21 1

1 12 2 22 2

1 1 2 2

1

det

Multiplying out the  matrix
1

and th
det

n

n

n n n nn n

n n

n n

n n n nn

x C C C b

x C C C b

x C C C b

b C b C b C

b C b C b C

b C b C b C

    
    
    
    
    
    

   
    
 
 

   

A

C

A




     








e  vector with

row by column multiplication

 
 
 
  

b

We show the result for 1x and the proofs of 2 3, ,   and nx x x are similar.
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Equating 1x on the Left with the first entry on the Right in the above gives :

   

  

 

 

 

 

1 1 11 2 21 1

12 1
22 2

1 1 2 1 32 3
1 2

2
2

By †
By ††

Substituting the
determinant
given above of
the cofactor
matrices

1

det

1 det 1 det

1

det

n n

n
n

n

n nn
n nn

x b C b C b C

a a
a a

a a
b b

a a
a a

 

   

 
   
            

 


A

A







  

 
 

 
  

 

12 1
1

( 1)2 1 1

By †††

1 det
n

n

n

n n n

a a

b

a a



  

 
 
  
 
 
 
 

  
  

    
  
  

  






   




(*)

What do we need to prove?

  
      1

1 1

det 1
det

det det
x  

A b
A b

A A
. We have

 
1

det A
in (*) but we need to show the

expression in the large square brackets on the Right is equal to   1det A b . How?

Need to find   1det A b . What is   1det A b equal to?

Well  1A b is the matrix A but the first column is replaced by the column vector b, that is:

 

1 12 1

2 22 2
1

2

n

n

n n nn

b a a

b a a

b a a

 
 
 
 
 
 

A b




   


We can evaluate the determinant of this matrix by expanding along the first column,

  

   

 
    

1 12 1

2 22 2
1

2

12 1
22 2

1 1 2 1 32 3
1 2

2
2

12 1
1

1 2 1 1

det det

1 det 1 det

1 det

n

n

n n nn

n
n

n

n nn
n nn

n
n

n

n n n

b a a

b a a

b a a

a a
a a

a a
b b

a a
a a

a a

b

a a

 



  

 
 
 
 
 
 

 
   
              

 
 
 

   
 
 

A b




   






   

 





   



What do you notice about this last expression?
This is identical to the above expression in the square brackets in (*). By (*) we have

  1 1 11 2 21 1det n nb C b C b C   A b 

Expanding
along this
column.
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We have

        1 1 11 1 1

1 1
det

det detn nx b C b C    A b
A A



Similarly we can show that for 2, 3, ,j n 

    1
det

detj jx  A b
A

Hence by substituting each j value we have

  
 
2

2

det

det
x 

A b

A
,

  
 
3

3

det

det
x 

A b

A
, … and

  
 

det

det
n

nx 
A b

A

  . If we have

  
 
1

1

det

det
x 

A b

A
,

  
 
2

2

det

det
x 

A b

A
,

  
 
3

3

det

det
x 

A b

A
, … and

  
 

det

det
n

nx 
A b

A

Then clearly  det 0A . This completes our proof.

■

We can apply Cramer’s rule to a particular linear system as the next example shows.
Example 21
Solve the following linear system by using Cramer’s rule:

2 5 16

7 2 7

5 3 3 1

x y z

x y z

x y z

  
   

  
Solution
We can write this in matrix form Ax b where

2 1 5 16

7 2 1 ,   and   7

5 3 3 1

x

y

z

      
             
           

A x b

Applying Cramer’s rule (provided  det 0A ) we have

  
 
1det

det
x 

A b

A
,

  
 
2det

det
y 

A b

A
and

  
 
3det

det
z 

A b

A
(*)

What is  det A equal to?

   

     

2 1 5
2 1 7 1 7 2

det det 7 2 1 2det 1 det 5det
3 3 5 3 5 3

5 3 3

2 6 3 21 5 5 21 10

45

  
                              

      

 

A

Hence  det 45 A . What else do we need to find?

By equations in (*) we need to find   1det A b ,   2det A b and   3det A b in order to

determine x, y and z respectively. What is   1det A b equal to?
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 1A b is the matrix A but with the first column replaced by

16

7

1

 
   
 
 

b . Hence   1det A b

is the determinant of this matrix:

  

     

1

16 1 5

det det 7 2 1

1 3 3

2 1 7 1 7 2
16det 1det 5det

3 3 1 3 1 3

16 6 3 21 1 5 21 2 45

  
   
   

     
               
         

A b

What is   2det A b equal to?

 2A b is the matrix A but with the second column replaced by b and   2det A b is the

determinant of this matrix:

  

     

2

2 16 5

det det 7 7 1

5 1 3

7 1 7 1 7 7
2det 16det 5det

1 3 5 3 5 1

2 21 1 16 21 5 5 7 35 90

 
   
  

      
             
         

A b

What is   3det A b equal to?

Similarly  3A b is the matrix A but with the third column replaced by b and   3det A b

is

  

     

3

2 1 16

det det 7 2 7

5 3 1

2 7 7 7 7 2
2det 1det 16det

3 1 5 1 5 3

2 2 21 7 35 16 21 10 180

 
   
  

      
             

       

A b

Substituting  det 45 A ,   1det 45A b ,   2det 90 A b and   3det 180A b :

  
 
1det

det
x 

A b

A
,

  
 
2det

det
y 

A b

A
and

  
 
3det

det
z 

A b

A
(*)

gives
45

1
45

x   


,
90

2
45

y


 


and
180

4
45

z   


Hence the unique solution of the linear system is 1, 2  and  4x y z     .

Replacing the first
column by b.

Replacing the second
column by b.

Replacing the third
column by b.
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E2 Linear Systems of Equations
Remember linear algebra is the study of linear equations and in this subsection we examine
the relationship between the solutions of a system and the determinant of its’ matrix.
From section C we know that the matrix A is invertible   det 0A . (Theorem (6.26)).

This means that matrix A being invertible is equivalent to  det 0A . Hence we can add

this  det 0A to Theorem (1.38) of chapter 1:

Theorem (6.32). Let A be an n by n matrix, then the following 6 statements are equivalent:
(a) The matrix A is invertible (non-singular).
(b) The linear system Ax O only has the trivial solution x O .
(c) The reduced row echelon form of the matrix A is the identity matrix I.
(d) A is a product of elementary matrices.
(e) Ax b has a unique solution.
(f)  det 0A .

We have added statement (f) to Theorem (1.38) of chapter 1.
What can we conclude about the linear system Ax b if  det 0A ?

Two things
1. If b O [Not Zero] then Ax b has an infinite number or no solutions.
2. If b O then Ax O has an infinite number of solutions. Clearly in this case we

have the trivial solution x O which means 1 2 30, 0, 0, , 0nx x x x    and

an infinite number of other solutions.

Example 22
Which of the following linear systems have a non-trivial solution?

(a)

2 5 0

7 2 0

5 3 3 0

x y z

x y z

x y z

  
   

  
(b)

2 3 0

4 5 6 0

6 7 8 0

x y z

x y z

x y z

  
  
  

Solution
(a) Note that in this case the matrix of coefficients is identical to the one in Example 21.
Thus by the above Example 21 we have Ax O where

 det 45 A

Do we have a non-trivial solution to the given linear system?
No because  det 0A [Not Zero] therefore by the above Proposition (6.32) part (b) we

only have the trivial solution:
0, 0x y  and 0z 

(b) We have Ax O where

 

     

1 2 3
5 6 4 6 4 5

det det 4 5 6 det 2det 3det
8 9 7 9 7 8

7 8 9

45 48 2 36 42 3 32 35 0

 
                      

 
      

A

What can we conclude about the given linear system?
Since  det 0A so by statement 2 above we can say that the given linear system has an

infinite number of solutions and so has non-trivial solutions.
Note that we do not have to find them.
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Example 23
For what values of k will the following system have
(i) a unique solution? (ii) an infinite number or no solution?

3

3

1

x y kz

x ky z

kx y z

  
  
  

Solution
Writing the given linear system in matrix form we have

Ax b where

1 1

1 1 ,

1 1

k x

k y

k z

   
       
      

A x and

3

3

1

 
   
 
 

b

The determinant of the matrix A is given by

       

 

2

3

3 2

1 1

det 1 1 1 1 1 1 1

1 1

1 1

1

k

k k k k k

k

k k k k

k k k k

 
         
  

     

   

A

(i) Under what conditions do we have a unique solution?
It is where  det 0A . Thus we have a unique solution provided

   2det 1 0k k  A which occurs when 20  or  1 0k k  

Thus we have unique solution provided 0  or  1k k   .
(ii) Under what conditions do we have no or an infinite number of solutions?

   2det 1 0k k  A which gives 0  or  1k k  

Thus we have no or an infinite number of solutions provided 0  or  1k k   .

SUMMARY
Cramer’s Rule (6.31). The linear system Ax b has the unique solution:

  
 
1

1

det

det
x 

A b

A
,

  
 
2

2

det

det
x 

A b

A
,

  
 
3

3

det

det
x 

A b

A
, … and

  
 

det

det
n

nx 
A b

A

  det 0A .


