Exercise 5(c)

Workbook questions in bold.

1. Find the number N_0 and the least positive integer n such that $\forall n > N_0$ we have the inequality
$$\left| \frac{1}{2n} \right| < \varepsilon$$
for
(a) $\varepsilon = 0.1$
(b) $\varepsilon = 0.01$
(c) $\varepsilon = 1 \times 10^{-3}$
(d) $\varepsilon = 1 \times 10^{-6}$
Check your results.

2. Find the number N_0 and the least positive integer n such that $\forall n > N_0$ we have the inequality
$$\left| \frac{2n + 1}{n + 1} - 2 \right| < \varepsilon$$
for
(a) $\varepsilon = 0.1$
(b) $\varepsilon = 0.01$
(c) $\varepsilon = 1 \times 10^{-3}$
(d) $\varepsilon = 1 \times 10^{-6}$

3. By using the formal definition of the limit of the sequence prove the following:
 (a) $\lim_{n \to \infty} \left(\frac{1}{n + 1} \right) = 0$
 (b) $\lim_{n \to \infty} \left(\frac{1}{n^2 + 1} \right) = 0$
 (c) $\lim_{n \to \infty} \left(\frac{1}{n^3 + 1} \right) = 0$

4. Prove that $\lim_{n \to \infty} \left(\frac{c}{n} \right) = 0$ for any $c \in \mathbb{R}$.

5. By using the formal definition of the limit of the sequence prove the following:
 (a) $\lim_{n \to \infty} \left(1 + \frac{1}{n} \right) = 1$
 (b) $\lim_{n \to \infty} \left(1 - \frac{1}{n} \right) = 1$
 (c) $\lim_{n \to \infty} \left(9 + \frac{1}{n} \right) = 9$
 (d) $\lim_{n \to \infty} \left(k + \frac{1}{n} \right) = k$ where k is a real number

6. By using the formal definition of the limit of the sequence prove the following:
 (a) $\lim_{n \to \infty} \left(\frac{1}{\sqrt{n}} \right) = 0$
 (b) $\lim_{n \to \infty} \left(\frac{1}{\sqrt[n]{k}} \right) = 0$ where $k \in \mathbb{N}$
Chapter 5 : Sequences and Real Numbers

7. Prove the following limits:

 (a) \(\lim_{n \to \infty} \left(\frac{n^2 - 1}{n^2 + 1} \right) = 1 \)

 (b) \(\lim_{n \to \infty} \left(\frac{n^2 - 1}{2^n} \right) = 0 \)

8. Prove that \(\lim_{n \to \infty} \left[\frac{\cos(n)}{n} \right] = 0 \) using the formal definition of a limit of sequence.

9. (i) Prove the following \(\lim_{n \to \infty} \left(\frac{1}{2^n} \right) = 0 \)

 (ii) Show that if \(|x| > 1 \) then \(\lim_{n \to \infty} \left(\frac{1}{x^n} \right) = 0 \)

 (iii) Hence, or otherwise, prove that \(\lim_{n \to \infty} \left(e^{-n} \right) = 0 \)

10. By using the formal definition of the limit of the sequence prove that

 \(\lim_{n \to \infty} \left(\frac{1}{n^n} \right) = 0 \)

Solutions 5(c)

1. \(N_0 = \frac{1}{2\varepsilon} \).

 (a) \(n = 6 \) \hspace{1cm} (b) \(n = 51 \) \hspace{1cm} (c) \(n = 501 \). \hspace{1cm} (d) \(n = 500 \, 001 \)