Exercise 3(a)

1. Let \(A = \{1, 2, 3, 4\} \) and \(B = \{a, b, c, d\} \). Let \(f : A \rightarrow B \) be defined by the following diagrams. In each case decide whether \(f \) is a function or not. If \(f \) is not a function then explain why not.

 (a)
 ![Diagram](image1)

 (b)
 ![Diagram](image2)

 (c)
 ![Diagram](image3)

 (d)
 ![Diagram](image4)

Fig 11

2. Let \(f : \mathbb{R} \rightarrow \mathbb{R} \) be given by
\[
f(x) = x^2 + x
\]
Find the images of the following under the function \(f \).

 (a) 2
 (b) 7
 (c) \(y \)
 (d) \(a + b \)
3. Consider Dirichlet’s function

\[f(x) = \begin{cases} 0 & \text{if } x \text{ is irrational} \\ 1 & \text{if } x \text{ is rational} \end{cases} \]

Determine the images of the following:
(a) \(\pi \)
(b) \(e \)
(c) \(1 \)
(d) \(\sqrt{3} \)
(e) \(\frac{2}{3} \)
(f) \(\sqrt{4} \)
(g) \(1 + \sqrt{5} \)
(h) \(1.414 \)

4. Let \(f : \mathbb{R} \to \mathbb{R} \) be given:

\[f(x) = \sqrt{x} \]

The same as in Example 6. Redefine the codomain so that this is a function.

5. Let \(f : \mathbb{N}/\{1\} \to \mathbb{Z} \) be given by

\[f(n) = \begin{cases} n & \text{if } n \text{ is prime} \\ -n & \text{if } n \text{ is composite} \end{cases} \]

Determine the following:
(a) \(f(13) \)
(b) \(f(33) \)
(c) \(f\left(\frac{1}{2}\right) \)

What is the range of \(f \)?
(Remember a composite number is a positive integer that is not prime).

6. Determine the domain, codomain and range for each of the following functions:
Let \(A = \{-3, -1, 0, 1, 3\} \) and \(f : A \to \mathbb{R} \) be given by
(a) \(f(x) = x^2 - 1 \)
(b) \(f(x) = x^2 + 1 \)
(c) \(f(x) = x^2 + 5x - 2 \)

7. Determine the range of the following functions.

Let \(A = \left\{ -\frac{\pi}{2}, -\frac{\pi}{4}, 0, \frac{\pi}{4}, \frac{\pi}{2} \right\} \) and \(g : A \to \mathbb{R} \) be given by
(a) \(g(x) = \cos(x) \)
(b) \(g(x) = \sin(x) \)
(c) \(g(x) = \cos^2(x) + \sin^2(x) \)

8. Let \(f : \mathbb{R} \to \mathbb{R} \) be a function given by \(f(x) = x^2 + 3x - 2 \). Determine
(a) \(f(y) \)
(b) \(f\left(\sqrt{2}\right) \)
(c) \(f(a + b) \)

9. Let \(g : \mathbb{R}^+ \to \mathbb{R} \). Determine \(g(x + y) \) for each of the following functions:
(a) \(g(x) = e^x \)
(b) \(g(x) = \ln(x) \)
(c) \(\sin(x) \)
(d) \(\cos(x) \)

10. The factorial function \(f : \mathbb{N} \to \mathbb{N} \) is defined by

\[f(n) = 1 \times 2 \times 3 \times 4 \times \ldots \times (n-1) \times n \]

Determine \(f(5) \), \(f(7) \), \(f(10) \), \(f(69) \) and \(f\left(\frac{1}{2}\right) \).
11. The tau function $\tau : \mathbb{N} \rightarrow \mathbb{N}$ is defined by

$$\tau(n) = \text{The number of positive divisors of } n$$

For example $\tau(6) = 4$ because the following 4 positive integers - 1, 2, 3 and 6 divide into 6 exactly.
Determine $\tau(10)$, $\tau(12)$, $\tau(20)$, $\tau(25)$ and $\tau(40)$.

12. The signum function $\text{sgn} : \mathbb{R} \rightarrow \mathbb{R}$ is defined by

$$\text{sgn}(x) = \begin{cases} +1 & \text{if } x > 0 \\ 0 & \text{if } x = 0 \\ -1 & \text{if } x < 0 \end{cases}$$

Determine the domain, codomain and range of $\text{sgn}(x)$.

13. Let $g : \mathbb{N} \rightarrow \mathbb{N}$ be given by $g(n) = 2^n$. Determine the range of g. Show that

(i) $g(n + 1) = 2g(n)$
(ii) $g(n + 2) = 4g(n)$
(iii) $g(n + 3) = 8g(n)$

Prove that $g(n + m) = 2^m g(n)$.

14. Let $g : \mathbb{Z} \rightarrow \mathbb{Q}$ be given by $g(n) = 2^n$. Determine the range of g. Prove that $g(n + m) = 2^m g(n)$

Some Solutions to Exercise 3a

4. Redefine the codomain to be the set of complex numbers, \mathbb{C}. Hence we have the function $g : \mathbb{R} \rightarrow \mathbb{C}$ given by $g(x) = \sqrt{x}$.

5. (a) $f(13) = 13$
(b) $f(33) = -33$
(c) $f\left(\frac{1}{2}\right)$ is not defined because $\frac{1}{2}$ is not in the domain. The domain is all the natural numbers apart from 1. The range is all the integers apart from 0, 1 and -1. Hence this can be written as $\mathbb{Z}/\{-1, 0, 1\}$.