Exercise 2c

1. Show that the following series diverge:

(a)
$$\sum_{n=1}^{\infty} \left(\frac{2n-1}{n}\right)$$
 (b) $\sum_{n=1}^{\infty} \left(1+\frac{1}{n}\right)$ (c) $\sum_{n=1}^{\infty} \left(\frac{2n^2-n+1}{n^2+n+1}\right)$
(d) $\sum_{n=1}^{\infty} \left(\frac{3n+1}{5n-1}\right)$ (e) $\sum_{n=1}^{\infty} (2)^n$ (f) $\sum_{n=1}^{\infty} \left(\frac{7}{6}\right)^n$
(g) $\sum_{n=1}^{\infty} \left(\frac{\sqrt{n}-1}{\sqrt{n}+1}\right)$ (h) $\sum_{n=1}^{\infty} \left(1+\frac{1}{n}\right)$ (i) $\sum_{n=1}^{\infty} \cos(n\pi)$
(j) $\sum_{n=1}^{\infty} \sin(n\pi)$

- 2. Show that the series $\sum_{n=1}^{\infty} \left(\sqrt{\frac{n-1}{n+1}} \right)$ diverges.
- 3. Prove that if both ∑(a_k) and ∑(b_k) are convergent then
 (a) ∑(a_k b_k) = ∑(a_k) ∑(b_k)
 (b) ∑c(a_k) = c∑(a_k) where c is a constant
 (c) ∑(ca_k + db_k) = c∑(a_k) + d∑(b_k) where c and d are constants.
- 4. Find the **first error** in the following derivation: Let both $\sum (a_k)$ and $\sum (b_k)$ be convergent then

$$\sum_{k=1}^{\infty} (a_k b_k) = \lim_{n \to \infty} \left[\sum_{k=1}^n (a_k b_k) \right]$$
$$= \lim_{n \to \infty} \left[\sum_{k=1}^n (a_k) \sum_{k=1}^n (b_k) \right]$$
$$= \lim_{n \to \infty} \left[\sum_{k=1}^n (a_k) \right] \lim_{n \to \infty} \left[\sum_{k=1}^n (b_k) \right]$$
$$= \sum_{k=1}^{\infty} (a_k) \sum_{k=1}^{\infty} (b_k)$$

5. Test the following series for convergence. If the series converges then determine its sum.

(a)
$$\sum_{n=1}^{\infty} \left(e^{-n} + \pi^{-n} \right)$$

(b) $\sum_{n=1}^{\infty} \left[\frac{1}{4n^2 - 1} + \left(\frac{2}{3} \right)^n \right]$
(c) $\sum_{n=1}^{\infty} \left(\frac{4^{n-2} + 6^{n-1}}{12^n} \right)$

(d)
$$\sum_{n=1}^{\infty} \left(\frac{1}{n^2 + n} + e^{-2n} \right)$$

(e) $\sum_{n=1}^{\infty} \left(\frac{4}{3n(n+2)} + 2\pi^{-2n} \right)$

6. Show that the following series diverge:

(a)
$$\sum_{n=1}^{\infty} \left(\cos^2(x) + \sin^2(x)\right)^n$$
 where $x \in \mathbb{R}$
(b) $\sum_{n=1}^{\infty} \left(e^{i\pi}\right)^n$

7. Prove that if |x| < 1 then $\lim_{n \to \infty} (x^n) = 0$.

8. Prove that
$$\sum_{n=1}^{\infty} (n^{1/n})$$
 diverges.

9. Show that $\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^n$ diverges.

Solutions 2c

1. All the series diverge because for each case $\lim_{n\to\infty} (a_n)$ is equal to the following values and none of them are zero:

(a) 2 (b) 1 (c) 2 (d) 3/5 For (e) and (f) the limits do not exist. (g) 1 (h) 1 For (i) and (j) the limits do not exist. 2. Since $\lim_{n \to \infty} \left(\sqrt{\frac{n-1}{n+1}} \right) = 1$ therefore the series diverges.

- 3. Very similar to the proofs under section C.
- 4. Error in the second line because

$$\sum_{k=1}^{n} (a_{k}b_{k}) \neq \sum_{k=1}^{n} (a_{k}) \sum_{k=1}^{n} (b_{k})$$

Examine the notation carefully and see what it means on both sides of the \neq sign.

5. All converge with the following values:

(a)
$$\frac{\pi + e - 2}{(e - 1)(\pi - 1)}$$
 (b) 5/2 (c) 19/96 (d) $\frac{e^2}{e^2 - 1}$ (e) $\frac{\pi^2 + 1}{\pi^2 - 1}$

6. (a)
$$\cos^2(x) + \sin^2(x) = 1$$
 therefore we have $\sum_{n=1}^{\infty} (1)^n$. Hence $\lim_{n \to \infty} (1)^n = 1 \neq 0$

(b)
$$\sum_{n=1}^{\infty} (e^{i\pi})^n = \sum_{n=1}^{\infty} (-1)^n$$
 and $\lim_{n \to \infty} (-1)^n$ does not exist.

7. Consider the geometric series

$$\sum_{n=1}^{\infty} (x^n) = x + x^2 + x^3 + \dots$$

Common ratio |r| = |x| < 1.

8. Let $n = 1 + k_n$ and we can express the given nth term as

$$(n)^{1/n} = (1+k_n)^{1/n}$$

Expand the Right Hand Side by using the binomial and show $\lim_{n\to\infty} (n^{1/n}) = 1$.

9.
$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e \neq 0.$$