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Exercise 2c 
 

1. Show that the following series diverge: 
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2. Show that the series 
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3. Prove that if both  and ( )ka∑ ( )kb∑  are convergent then 
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4. Find the first error in the following derivation: 
Let both  and ( )ka∑ ( )kb∑  be convergent then 
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5. Test the following series for convergence. If the series converges then 

determine its sum. 
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6. Show that the following series diverge: 
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Solutions 2c 

1. All the series diverge because for each case ( )lim nn
a

→∞
 is equal to the following 

values and none of them are zero: 
(a) 2  (b) 1  (c) 2  (d) 3/5   
For (e) and (f) the limits do not exist. 
(g) 1  (h) 1  
For (i) and (j) the limits do not exist. 
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 therefore the series diverges. 

3. Very similar to the proofs under section C. 
4. Error in the second line because 
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Examine the notation carefully and see what it means on both sides of the  
sign. 
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5. All converge with the following values: 
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7. Consider the geometric series 
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