Exercise 1(f)

1. By constructing a truth table show that
\[\text{not} \ (P \Rightarrow Q) = [P \land \text{not} \ Q] \]
[Equivalent]

In each case prove the following statements by applying contradiction. In some cases it may be easier to do a direct proof but this is an exercise in proof by contradiction.

2. Prove the following proposition:
 For every real number, \(x \), there is a unique \(y \) such that \(x + y = 0 \)
 \(y \) is called the **additive inverse** of \(x \).

3. Let \(x \) and \(y \) be real numbers. Prove that \(xy = 0 \) \(\Rightarrow \) \(x = 0 \) or \(y = 0 \)
 In the remaining questions lower case letters represents an integer.

4. Prove that \(n^2 \) is odd \(\Rightarrow \) \(n \) is odd.
 \([\text{We have proved this result by contrapositive in Example 35. This time prove the result by contradiction and compare the two proofs}].\)

5. Prove that \(n^3 \) is odd \(\Rightarrow \) \(n \) is odd.

6. Prove that \(n^3 \) is even \(\Rightarrow \) \(n \) is even.

7. Prove that \(ab \) is odd \(\Rightarrow \) both \(a \) is odd and \(b \) is odd.

8. Prove that \(ab \) is even \(\Rightarrow \) \(a \) is even or \(b \) is even.

9. Prove that \(\sqrt{6} \) is irrational.

10. Prove that \(\sqrt{2} \) is irrational.

11. Prove that \(\sqrt{17} \) is irrational. \([\text{Hint: Let} \ p \text{ be prime and} \ n \text{ be an integer greater than 1. Then} \ p \mid n^2 \Rightarrow p \mid n].\)

12. Prove that there are no positive integer solutions such that \(a^2 - b^2 = 1 \)

13. Prove that the sum of a rational and irrational number is irrational.

14. Consider the triangle shown in Fig 5. Show that if \(\angle B = \angle C \) then \(AB = AC \)

![Fig 5](image-url)