Exercise 17(d)

1. Determine whether the following waveforms f(t) are odd, even or neither:

Figure 32

2. Determine whether the following functions are odd, even or neither:

(a)
$$e^t$$
 (b) $\tan(t)$ (c) $\frac{1}{1+t^2}$ (d) $e^{-t}\sin(t)$

3. Determine the constant term A_0 of the Fourier series for the following waveforms which have a period of 2π :

4. (i) Determine the Fourier series of the waveform shown in Fig. 33(a).(ii) Deduce that

$$\frac{\pi^2}{8} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \cdots$$

- 5. Let k be any integer. Show the following results:
 - (a) $\cos(kt)$ is even function.
 - (b) $\sin(kt)$ is an odd function.
- 6. **(a) For an *odd* function, f(t), with period 2π show that

$$A_{_{0}}=A_{_{k}}=0 \ \ \mathrm{and} \ \ B_{_{k}}=rac{2}{\pi}\int\limits_{_{0}}^{\pi}fig(tig) \mathrm{sin}ig(ktig)\,\mathrm{d}t$$

**(b) For an *even* function, f(t), with period 2π show that

$$A_{k} = \frac{2}{\pi} \int_{0}^{\pi} f(t) \cos(kt) dt$$
 and $B_{k} = 0$

[Hint: Consider change of variable t = -x and use the result

$$\int_{a}^{b} f(y) \mathrm{d}y = -\int_{b}^{a} f(y) \mathrm{d}y]$$

7. Consider the following waveform of period 2π :

Figure 34

Show that the Fourier series of this waveform is given by

$$f(t) = -2 \begin{bmatrix} (6 - \pi^2)\sin(t) - (6 - 4\pi^2)\frac{\sin(2t)}{2^3} + (6 - 9\pi^2)\frac{\sin(3t)}{3^3} \\ -(6 - 16\pi^2)\frac{\sin(4t)}{4^3} + (6 - 25\pi^2)\frac{\sin(5t)}{5^3} - \dots \end{bmatrix}$$

You may find the following result helpful:

$$\int_{0}^{\pi} x^{3} \sin\left(nx\right) \mathrm{d}x = \frac{\left(6\pi - n^{2}\pi^{3}\right)}{n^{3}} \cos\left(n\pi\right)$$

8. Show that the Fourier series of the following square wave of height h and period 2π :

Figure 35

Is given by
$$f(t) = \frac{4h}{\pi} \left[\sin\left(t\right) + \frac{\sin\left(3t\right)}{3} + \frac{\sin\left(5t\right)}{5} + \frac{\sin\left(7t\right)}{7} + \cdots \right].$$

9. Show that the Fourier series of the following square wave of amplitude h and period 2π :

$$\frac{\pi^2}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \frac{1}{11} + \cdots$$

10. * Consider the following waveform which has a period of 2π :

Figure 37

(i) Show that the Fourier series of f(t) is given by

$$f(t) = \frac{8}{\pi} \left[\sin(t) + \frac{\sin(3t)}{3^3} + \frac{\sin(5t)}{5^3} + \frac{\sin(7t)}{7^3} + \cdots \right]$$

(ii) Deduce that

$$\frac{\pi^3}{32} = 1 - \frac{1}{3^3} + \frac{1}{5^3} - \frac{1}{7^3} + \cdots$$

Brief Solutions

1. (a) even	(b) odd	(c) even	(d) odd
2. (a) neither	(b) odd	(c) even	(d) neither
3. (a) $\frac{\pi}{2}$	(b) $\frac{9\pi}{4}$		
$4. \ f(t) = \frac{\pi}{2} + \frac{\pi}{2}$	$\frac{4}{\pi} \left[\cos\left(t\right) + \frac{\cos\left(3t\right)}{9} \right]$	$+\frac{\cos(5t)}{25}+$	$-\frac{\cos(7t)}{49}+\cdots$